КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Полупроводника
Равновесная концентрация дырок в валентной зоне. Закон действующих масс для невырожденного Равновесная концентрация дырок в валентной зоне po может быть рассчитана по формуле, аналогичной (1.2.1) , (1.2.8) где Np(E) – энергетическая плотность электронных состояний валентной зоны с учетом спина электрона, fop(E,T) – равновесная вероятность того, что при температуре Т уровень с энергией Е остаётся вакантным, т.е. будет занят дыркой. В соответствии с этим определением и формулой (1.2.2) fop(E,T) = 1 – fon(E,T) = 1 - = . (1.2.9) Для уровней валентной зоны невырожденного полупроводника выполняется условие >> 1, и потому , (1.2.10) т.е. дырки валентной зоны, так же как и электроны зоны проводимости, подчиняются фактически статистике Больцмана. Формула (1.2.10) показывает, что для уровней валентной зоны вероятность оказаться вакантными, т.е занятыми дырками, очень быстро убывает с уменьшением энергии уровня. Это значит, что основная часть дырок располагается вблизи потолка валентной зоны и потому допустимо: а) использовать в качестве Np(E) для всей валентной зоны функцию (1.1.3) ; (1.2.11) б) устремить в (1.2.8) нижний предел интегрирования к минус бесконечности (). В итоге, используя для fop(E,T) точное выражение (1.2.9) и приближённое выражение (1.2.11) для Np(E), для вычисления равновесной концентрации дырок в валентной зоне получаем выражение . (1.2.12) В курсе физики твёрдого тела будет показано, что для невырожденного полупроводника интегрирование в (1.2.12) приводит к выражению . (1.2.13) Величину NV (см-3) называют эффективной плотностью состояний в валентной зоне и вычисляют по формуле NV = = = . (1.2.14) Здесь mdp* - эффективная масса дырки в валентной зоне. Согласно (1.2.14) при Т = 300К и NV» 2.5*1019см-3. По физическому смыслу величина NV близка к количеству уровней валентной зоны, приходящихся на 1 см3 в интервале энергий от EV – kT до EV. Легко убедиться, что для невырожденного полупроводника произведение равновесных концентраций электронов и дырок не зависит от положения уровня Ферми, а определяется только температурой и шириной запрещенной зоны. В самом деле, согласно (1.2.6) и (1.2.13) = или . (1.2.15) Последнее равенство принято называть законом действующих масс для невырожденного полупроводника. Формула (1.2.15) позволяет, зная Eg и равновесную концентрацию свободных носителей одного вида, найти равновесную при данной температуре концентрацию свободных носителей другого вида. Как мы убедимся далее, собственные, т.е. беспримесные, полупроводники являются невырожденными. Для собственных полупроводников ni = pi и согласно (1.2.15) получаем . (1.2.15а) Это позволяет переписать формулу (1.2.15) в виде . (1.2.15б) Из (1.2.15б) и (1.2.15) легко получить формулу, описывающую температурную зависимость концентрации свободных носителей заряда в собственном полупроводнике (1.2.16) или, после логарифмирования, . (1.2.16а) На рис. 1.2.1 эта зависимость показана для германия, кремния и арсенида галлия. По оси ординат отложен натуральный логарифм собственной концентрации, выраженной в см-3, а по оси абсцисс – обратная температура в К-1.
Рис. 1.2.1. Зависимость от температуры собственной концентрации (см-3) свободных носителей заряда в Ge, Si и GaAs в интервале температур от 100 до 1200 К.
Дата добавления: 2014-10-15; Просмотров: 528; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |