КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Градиент
В каждой точке области , в которой задана функция , определим вектор, проекциями которого на оси координат являются значения частных производных в выбранной точке . Назовем этот вектор градиентом функции и обозначим его символами . Определение 3.2. Градиентом функции в точке называется вектор, проекции которого служат значения частных производных этой функции, т.е. . (3.3) Подчеркнем, что проекции градиента зависят от выбора точки и изменяются с изменением координат этой точки. Таким образом, каждой точке скалярного поля, определяемого функцией , соответствует определенный вектор – градиент этой функции. Учитывая то, что скалярное произведение равно модулю одного вектора умноженному на проекцию другого вектора на направление первого, то можно еще сказать, что: производная функции по данному направлению равна проекции градиента функции на направление дифференцирования, т.е. , где j - угол между и направлением .
Установим некоторые свойства градиента. Отсюда следует, что производная по направлению достигает наибольшего значения, когда , т.е. при . 1) Производная в данной точке по направлению вектора имеет наибольшее значение, если направление вектора совпадает с направлением градиента; это наибольшее значение производной равно . Таким образом, направление градиента есть направление наискорейшего возрастания функции. В противоположном направлении функция будет быстрее всего убывать. - наибольшая скорость изменения функции в точке . 2) Производная по направлению вектора, перпендикулярного к вектору , равна нулю.
Пример 3.1. Дана функция . Найти: 1) производную в точке по направлению вектора ; 2) производную в точке по направлению к точке ; 3) градиент функции в точке . Решение. 1) Находим частные производные и значения частных производных в точке : ;
;
. Находим направляющие косинусы вектора : . Тогда по формуле (3.1) получаем: . Так как , то в данном направлении функция возрастает.
2) Находим координаты и направляющие косинусы вектора : ; . Тогда по формуле (3.1) получаем: . Так как , то в данном направлении функция убывает.
3) Используя формулу (3.3) запишем градиент функции в точке : . ,
Дата добавления: 2014-10-15; Просмотров: 2073; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |