Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Структурные схемы САР. Правила структурных преобразований




Тема 3

Метод кусочно-линейной линеаризации применим для нелинейных объектов, статические характеристики которых могут быть представлены в виде суммы отрезков линейных характеристик (1, 2, 3, 4, 5).

Для каждого отрезка характеристики справедливо линейное дифференциальное уравнение. Переход от одного участка к другому осуществляется «припасовыванием» отдельных решений. При этом решение для конца одного участка является начальным условием для следующего и т.д.

В статике все звенья можно разделить на два больших класса: статические и астатические. Статические звенья – звенья, поведение которых в статике описывается статической характеристикой типа yвых= kxвх

Существует большой класс звеньев, для которых статическую характеристику не удается получить, т.е. в зависимость yвых = f (xвх) входит время. Такие объекты называются астатическими. Условно в качестве статической характеристики для астатических звеньев считают зависимость: т.е. в астатических объектах каждому значению входного сигнала соответствует определенная скорость входного сигнала.

 

2. Динамические характеристики линейных элементов и систем: переходные и весовые функции; частные характеристики, их применение и получение.

 

Динамика – в общем, философском смысле слова, движение. В динамике выходная величина звена (системы) изменяется во времени вследствие изменения входной величины. Связь между входным и выходным параметрами в отдельном элементе (или системе) в динамике описывается дифференциальным уравнением. Дифференциальное уравнение аналитически выражает характер изменения во времени выходного параметра при определенном виде входного параметра.

В общем виде дифференциальное уравнение может быть записано следующим образом:

где m≤ n(условие физической реализуемости).

 

Решение дифференциальных уравнений высоких порядков представляет известные трудности, поэтому сделаны попытки упростить, решение дифференциальных уравнений. Для этого применяют операторный метод, основанный на преобразовании Лапласа.

Смысл преобразования Лапласа заключается в том, что функции действительного переменного х(t) ставится в соответствие функция комплексного переменного x(p), т.е.

x(t)x(p), где x(t)- оригинал; x(p)- изображение.

Операция преобразования записывается так: L{x(t)}=x(p).

Соответствие выражается интегралом Лапласа:

Таким образом, с помощью этого интеграла можно от функции x(t) перейти к функции (p).

Для того, чтобы записать дифференциальное уравнение в операторной форме, найдем преобразование производной:

L {x'(t)} =?

Воспользуемся формулой интегрирования по частям:

 

По формуле интегрирования по частям:

U = e-pt; dV = x’(t)dt;

dU = -pe-ptdt; V = x(t),

тогда

начальные условия, которые будем считать нулевыми.

При нулевых начальных условиях справедливо утверждение:

Дифференцированию оригинала соответствует умножение изображения на оператор p:

Это свойство Лапласа позволяет свести дифференциальное уравнение к алгебраическому и ввести понятие передаточной функции линейного элемента (системы):

anpnyвых(p) + an-1pn-1yвых(p) + …. + a1pyвых(p) + a0yвых(p)=bmpmxвх(p) + …. + b1pxвх(p) + +b0x(p)

Далее уравнение решается как обыкновенное алгебраическое:

Операции нахождения оригинала выходной величины по изображению, называется обратным преобразованием Лапласа:

Обратное преобразование совершается с помощью следующего интеграла:

Для облегчения задачи нахождения оригинала по изображению созданы таблицы преобразования Лапласа, позволяющие не решая интеграла, находить оригинал по изображению и обратно.

 

Оригинал f(t) Изображение f(p)
t
kt
e-αt
sinαt

 

Отношение изображения выходной величины к изображению входной величины при нулевых начальных условиях называется передаточной функцией:

Статистический коэффициент передачи тоже есть отношение выхода ко входу, но в установившемся режиме, т. е. ,

следовательно, k – частный случай W(p), т.к. в статике , то и p=0, следовательно:

Временные характеристики звена (системы) представляют собой изменение выходной величины во времени при передаче на ее вход типового апериодического воздействия. В качестве последнего используют единичное ступенчатое воздействие или единичный импульс.

При единичном ступенчатом воздействии входная величина мгновенно возрастает от 0 до 1 и далее остается неизменной, т. е.

Реакция звена на единичную ступенчатую функцию называется переходной характеристикой звена (обозначается h(t))

Очевидно h(t) представляет решение дифференциального уравнения для единичного ступенчатого входного сигнала.

Выражение для h(t) может быть получено из передаточной функции W(p).

По определению:

, т. е.

 

Оригинал переходной характеристики находится из таблицы:

Реакция звена на единичный импульс [δ(t) – дельта - функция] называется импульсной переходной характеристикой (весовой функцией).

Дельта – функцию [δ(t)] определяют как импульс, длительность которого равна 0, амплитуда - , а площадь 1, т. е. δ(t) можно определить как производную от 1(t):

 
 


 

Весовую функцию (обозначают ω(t)) также можно найти из передаточной функции звена (системы).

Оригинал весовой функции находится из таблиц преобразования Лапласа:

Частотные характеристики определяют поведение звена (системы) при подаче на его вход гармонического (синусоидального) сигнала.

Пусть xвх(t)=Aвхsin ωt, где Авх=const, ω – круговая частота входного сигнала.

На выходе звена (системы) тоже появится гармонический (синусоидальный) сигнал, амплитуда и фаза которого будут другими, зависящими от частоты входного сигнала.

yвых(t)=Aвых(ω)sin[ωt+φвых(ω)]

Зависимость отношения выходного сигнала к входному от частоты входного сигнала называется комплексной передаточной функцией звена (системы).

Нас интересует одновременная зависимость 2-х величин: Авых и φвых, поэтому входной и выходной сигналы удобно рассматривать в комплексной плоскости, а для их описания применить аппарат теории функций комплексного переменного.

Синусоидальный входной сигнал можно изобразить вектором ОА на комплексной плоскости, вращающимся вокруг начала координат.

xвх(t)=Aвхsinwt;

Тогда ;

По аналогии: ;

По определению комплексная передаточная функция[K(jω)] может быть записана как

;

Выражение K(jw) можно найти из дифференциального уравнения системы:

xвх(t) = Авх ej wt;

увых(t) = Авых(w)ej[wt + jвых(w)];

 

Подставив эти выражения в дифференциальное уравнение, найдем К(jw)

Сравнив это выражение с выражением передаточной функции будем определять комплексную передаточную функцию звена (системы) из передаточной функции заменив в ней оператор «р» на оператор «jw»,

Из выражения K(jw) видим, что каждой частоте w соответствует вектор K(jw), который при изменении частоты от 0 до ¥ описывает в комплексной плоскости кривую (годограф), называемую амплитудно-фазо-частотной характеристикой звена (системы) (АФЧХ).

АФЧХ показывает одновременно, как изменяется амплитуда и фаза выходного сигнала при изменении частоты входного сигнала.

Можно построить отдельно амплитудно-частотную (АЧХ) и фазо-частотную (ФЧХ) характеристики, показывающие как изменяется амплитуда и фаза в функции от частоты (w).


Тема 2 Типовые динамические звенья САР

 

По виду динамических характеристик звенья САР делятся на

1. Безинерционные (усилительные или статические) звенья.

К безинерционным звеньям относят элементы, которые в динамике описываются дифференциальным уравнением нулевого порядка вида

yвых(t) = kхвх(t), (1)

где k-статический коэффициент передачи звена.

Для получения выражения передаточной функции запишем уравнение (1) в операторной форме (на основании основного свойства преобразования Лапласа:)

yвых(p) = kxвх(p)

По определению передаточная функция находится как отношение выхода ко входу в операторной форме при нулевых начальных условиях:

(2)

Из передаточной функции найдем статический коэффициент передачи звена (в статике все производные равны 0)

Выражение передаточной функции совпадает со статическим коэффициентом передачи, поэтому звено называют статическим.

Из передаточной функции находят переходную и весовую функции в операторной форме:

(3)

Оригинал переходной характеристики находят из таблиц преобразования Лапласа.

Переходная характеристика безинерционного звена имеет вид:

 
 

 
 


Весовая функция в операторной форме

ω(p)=W(p) (4)

Оригинал весовой функции

ω(t) = L-1 {k } = k d(t)

 

 

       
   
 
 

 

 


δ(t)- дельта-функция импульс бесконечно малой длительности и бесконечно большой амплитуды, площадь которого равно 1.

Частотные характеристики звена найдем из выражения комплексной передаточной функции:

(5)

Амплитудно-частотная и фазо-частотная характеристики звена имеют вид:

АЧХ:

ФЧХ:

Графическое изображение частотных характеристик представлено на рисунках:

 
 

 

АФЧХ- годограф вектора K(jw) в комплексной плоскости при изменении частоты от 0 до .

2. Инерционное звено первого порядка.

В динамике описывается дифференциальным уравнением первого порядка, которое может быть приведено к виду:

(1)

где T - постоянная времени звена;

k – статический коэффициент передачи звена;

В операторной форме уравнение имеет вид:

Т py(p) + y(p) = kx(p)

А передаточная функция находится как:

Статический коэффициент передачи звена:

Переходная характеристика в операторской форме:

(3)

Оригинал переходной характеристики:

Графическое изображение переходной характеристике имеет вид:

 

 
 

 

 


Касательная к начальной точке переходной характеристики отсекает на линии установившегося режима отрезок, равный Т.

T – время, за которое выходная величина достигает установившегося значение, если изменяется с начальной постоянной скоростью.

Весовая функция инерционного звена первого порядка в операторной форме

(4)

Оригинал весовой функции находит из таблиц преобразования Лапласа:

 

 

Частные характеристики звена находим из выражения К(jw):

Амплитудно-частотную и фазо-частотную характеристи находим следующим образом:

jвых(w) = arg K(jw) = – arctgw

Графический вид характеристик показан на рисунки:

 

 

w   1/T ¥
Re(w) k k/2  
Jm(w)   -k/2  

 

 


3. Идеальное дифференцирующее звено.

Дифференциальное уравнение звена:

(1)

Уравнение в операторной форме:

yвых(р) = kpxвх(p)

Передаточная функция:

(2)

 

т.е. в статике идеальные дифференцирующие звенья отсутствуют. Применяются такие звенья при реализация гибких обратных связей (в статике характеристике равны 0, динамические характеристики отмечаются от 0).

Переходная характеристика звена в операторной форме:

(3)

Оригинал переходной характеристики находим из таблиц:

 
 

h(t) = L-1 {k} = kd(t).

Частотные характеристики звена определим из выражения K(jw):

(4)

 

АЧХ: Aвых(w) = ½K(jw)½Aвх=1 = kw,

ФЧХ: jвых(w) = arg K(jw) = +p/2,

то есть дифференцирующее звено вносит в систему опережение по фазе, равное 90о.

Графический вид характеристик дифференцирующего звена:

 
 

4. Идеальное интегрирующее звено.

 

Дифференциальное уравнение звена:

Уравнение в операторной форме:

pyвых(p) = kxвх(p)

Передаточная функция и статический коэффициент передачи:

то есть интегрирующее звено не имеет статической характеристики в явно выраженной форме, она не определена. В статике такое звено является астатическим.

Условная статическая характеристика (статический коэффициент) может быть определена:

 

Переходная характеристика в операторной форме

Оригинал переходной характеристики:

 

 

 

Частотные характеристики звена определяются из

Авых(w) = | K(jw) |Авх=1 = k/w jвых(w) = arg K(jw) = – p/2

 

5. Инерциальное звено второго порядка. Колебательное звено.

Дифференциальное уравнение инерциального звена второго порядка:

в операторной форме:

Т22p2yвых(p) + T1pyвых(p) + yвых(p) = kxвх(p)

Передаточная функция:

Переходную характеристику звена можно найти классическим способом, решая дифференциальное уравнение звена, когда в правой части 1(t)=xвх(t)

Решение однородного уравнения определяются корнями характеристического уравнения звена, которое имеет вид:

Т22p2 + T1p + 1 = 0

 

 

Возможно два случая:

1) Т1³2Т21/2Т2 = d ³ 1); p1,2 = - a1,2

В этом случае полное решение уравнения, т.е. переходная характеристика, может быть записана следующим образом:

где С1, С2 – постоянные интегрирования, определяемые из начальных условий. Характеристика звена в этом случае имеет вид:

 
 

 

 


Звено в этом случае называется инерционным второго порядка.

 

2) T1 < 2T2 (T1/2T2 = d < 1) p1,2 = - a ± jb.

 

В этом случае в общем виде переходную характеристику можно записать как:

h(t) = k [1 + Aeat sin(bt + j)],

 

где А и определяются из начальных условий.

 

 

Переходная характеристика в этом случае представляется затухающими колебаниями, и звено в этом случае называется колебательным звеном.

Переходные характеристики звена второго порядка можно определить также в операторной форме из передаточной функции, а оригинал найти из таблиц преобразования Лапласа.

Уравнение звена второго порядка для случая T1/2T2<1 переписывается через параметры колебательного звена в виде:

где w0 - частота собственных колебаний звена; d-коэффициент затухания. Параметры колебательного звена связаны с параметрами инерционного звена второго порядка соотношениями:

 

Частотные характеристики звена определяются из комплексной передаточной функции:

 

 

ФЧХ:

 

 


При математическом описании САР обычно изображают в виде блок-схемы и для каждого “блока” (элемента) записывают уравнения, исходя из физических законов, которым подчиняются процессы в нём. Структурную схему можно составить на основании этой блок-схемы и полученных уравнений (передаточных функций). И дальнейшие преобразования необходимые для получения уравнений и передаточных функций системы проще и нагляднее производить по структурной схеме.

 

1. Последовательное соединение звеньев.

 

При последовательном соединении выходная величина каждого предшествующего звена является входным воздействием последующего звена.

 
 

 

При преобразовании структурных схем цепочку из последовательно соединенных звеньев можно заменить одним звеном с передаточной функцией Wэкв(p), которую находят следующим образом:

 

Записывают уравнения последовательно соединенных звеньев:

x1(p)= x(p)∙W1(p); x2(p)= x1(p)∙W2(p), …;

y(p)=xn-1(p)∙Wn(p).

Исключив из этой системы x1, x2, …,xn-1, получим:

y(p)= W1(p)∙W2(p)∙ … ∙Wn(p )∙ x(p);

откуда

т.е. передаточная функция последовательного соединения звеньев определяется как произведение передаточных функций звеньев, включенных последовательно.

2. Параллельное соединение звеньев.

При параллельном соединении на вход всех звеньев подается один и тот же сигнал, а выходящие величины алгебраически складываются:

Эту цепь нужно заменить одним звеном с передаточной функцией Wэкв(p):

 
 

 


Составим уравнения для каждого из звеньев цепочки:

x1p)= x(p)∙W1(p); x2(p)=x(p)∙W2(p); …;

xn(p)=x(p)∙Wn(p); y(p)=x1(p)x2(p)xn(p)

Исключив из этой системы x1, x2,…,xn, получим:

y(p)=x(p)[W1(p)+W2(p)+…+Wn(p)], откуда

т.е. передаточная функция параллельного соединения звеньев определяется как алгебраическая сумма передаточных функций звеньев, включенных паралле

3. Звено, охваченное обратной связью.

 

Звено охвачено обратной связью, если его выходной сигнал через какое-либо другое звено подается на выход.

Необходимо заменить эту цепочку эквивалентным звеном с передаточной функцией Wэкв (p).

 

Уравнения, описывающие эту цепочку звеньев:

y(p) = D(p) × Wnр(p); xос(p) = y(p) × Wос(p);

D (p) = x(p) xос(p).

Отсюда уравнения, связывающие выход и вход системы:

y(p)=[x(p)y(p)∙Wос(p)]∙Wпр(p)

или

 

Передаточная функция замкнутой цепи равна передаточной функции прямой цепи, деленной на единицу плюс (о.о.с.) или минус (п.о.с.) передаточная функция цепи обратной связи, умноженная на передаточную функцию прямой цепи.

4. Определение передаточных функций разомкнутой и замкнутой системы.

 

Пусть исследуемая система имеет следующую структурную схему:


 

 


 

Используя правила структурных преобразований, приведем исходную систему к одноконтурной:

Замкнутая система называется одноконтурной, если при её размыкании в какой-либо точке получается цепь, не содержащая параллельных и обратных связей.

Рассмотрим полученную одноконтурную систему.

Найдём передаточную функцию по входу x(p) и выходу y(p).

Участок по ходу сигнала от точки приложения входного воздействия до точки съёма выходного сигнала назовем прямой, а цепь при отсутствии обратной связи – разомкнутой цепью.

 

 

Передаточная функция одноконтурной системы с отрицательной обратной связью определяется как:

 

5. Статика САР. Способы уменьшения статизма.

Описания линейной системы в статике можно получить, зная передаточную функцию системы. Поскольку структурные схемы в статике можно получить из структурных схем в динамике, заменить в передаточные функции звеньев статическими коэффициентами передачи, найденными по этой формуле.

Правила структурных схем, справедливые для динамики, можно применить и для структурных преобразований в статике.

Качество систем автоматического регулирования в статике определяется статической ошибкой - разница между заданным и действительным значениями регулируемой величин в установившемся режиме.

Пусть структурная схема САР в статике имеет вид:

 
 

По определению статическая ошибка D = xуст – yуст. Найдем Δ через параметры системы

Тогда

где kр·kо = kраз – статический коэффициент передачи разомкнутой системы.

Тогда зависит не только от параметров системы, но и от входного сигнала.

Поэтому для оценки качества САР применяют относительную статическую ошибку – статизм, которую определяют как отношение абсолютной статический ошибки к заданному значению регулируемой величины.

Качество системы в статике тем лучше, чем меньше статическая ошибка, которая зависит от величины kраз.

Для уменьшения статической ошибки нужно:

1. Увеличивать kраз. Однако увеличение kраз ведёт к уменьшению запаса устойчивости поэтому увеличивать kраз нужно очень осторожно;

2. Включать в прямую цепь регулирования астатического (интегрирующего) звена.


3.

 
 

 

 


Астатическое звено уменьшает статическую ошибку системы до 0. Систему с нулевой статической ошибкой (при отсутствии остаточного отклонения между заданными и действительными значениями регулируемой величины) называется астатической.

Система с наличием статической ошибки (при наличии остаточного отклонения между заданными и действительными значениями регулируемой величины) называется статической.




Поделиться с друзьями:


Дата добавления: 2014-10-17; Просмотров: 1609; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.251 сек.