КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Структура и химический состав изопреновых каучуков
Бутадиеновые каучуки для шин получают в растворе с комплексными каталитическими системами: «титановой» - СКД-1 с 87-95% цис -1,4-звеньев и «неодимовой» – СКД-Н с 95-99% цис -1,4-звеньев. Из-за неудовлетворительных технологических свойств цис -полибутадиены не применяются самостоятельно, но при смешении с НК, СКИ и БСК повышают эластичность, морозостойкость, износостойкость и динамическую выносливость протекторных резин. Бутадиен-стирольные каучуки (БСК) со статистическим распределением звеньев, включая и бутадиен-α-метилстирольные СКМС, получают «горячей» (при 50 о С) сополимеризацией в эмульсии и используются в легковых шинах: . Они имеют статистическое распределение звеньев в макромолекулах, растворяются в тех же растворителях и так же легко обрабатываются на обычном оборудовании, что и изопреновые каучуки, но дают более высокое теплообразование и требуют большего расхода энергии. Резиновые смеси дают повышенную усадку при формовании и имеют низкую клейкость, но хорошую каркасность. С ростом молекулярной массы каучуков повышаются износостойкость и динамическая выносливость резин, но затрудняется переработка смесей. Поэтому замена 15% или 27% каучука дешёвым высокоароматизированным маслом ПН-6, получаемым из нефти, в маслонаполненных сополимерах СК(М)С-30АРКМ-15 и СК(М)С-30АРКМ-27 не только улучшает технологические свойства резиновых смесей, но и даёт значительный экономический эффект. Каучуки растворной полимеризации (ДССК) из-за узкого молекулярно-массового распределения уступают БСК по теплообразованию при смешении, температурному интервалу каландрования и шприцевания, когезионной прочности и клейкости. Недостатки ДССК устраняют добавлением к ним изопреновых каучуков и пластификаторов, повышающих клейкость. По эластичности и износостойкости резин ДССК превосходят БСК и приближаются к бутадиеновым каучукам. Бутилкаучуки (БК) с ММ 200-400 тыс и широким ММР получают кати-онной сополимеризацией изобутилена с 0,6-2,5% изопрена при 100 о С: , а непредельность определяют количеством изопреновых звеньев. БК растворяются в углеводородах, хлороформе и тетрахлориде углерода и трудно поддаются механической пластикации. Смеси БК легко формуются и имеют удовлетворительную конфекционную клейкость, но из-за хладотекучести и малой каркасности плохо сохраняют форму. Термообработка БК с техуглеродом на вальцах (30 мин при 160 о С) или в резиносмесителе (15-20 мин при 190-230 о С) улучшает технологические свойства и уменьшает хладотекучесть смесей и повышает физико-механические свойства резин. Вулканизация серой проходит медленно, эффективна только с высокоактивным ускорителем и при 150-200 о С. Стойкость к старению повышает вулканизация алкилфенолформальдегидными смолами с добавкой хлорсодержащих полимеров (полихлоропрен, ХСПЭ) или хлоридов металлов, п -хинондиоксимом или динитрозосоединениями. БК не совулканизуются с непредельными каучуками, кроме полихлоропрена. Резины из БК характеризуются высокими тепло-, озоно- и агрессивостойкостью, газонепроницаемостью и диэлектрическими свойствами. Поэтому их применяют при производстве ездовых и варочных камер и диафрагм форматоров-вулканизаторов. Недостатки - малая эластичность, высокие гистерезисные потери и низкая адгезия к металлу. Улучшают свойства БК галогенированием, хлорбутилкаучук (ХБК) или бромбутилкаучук (ББК) совулканизуются с непредельными каучуками, а резины на их основе хорошо крепятся к металлам и тканям и применяются в герметизирующем слое бескамерных шин. Противостарители шинных резин - это амины, которые по механизму действия обрывают цепи, связывая пероксидные радикалы. Из них наиболее широко применяют 4,4-диаминодифенилметан (тонокс), фенил-β-нафтиламин (нафтам-2), п-оксифенил-β-нафтиламин (п -оксинеозон) и ацетонанил Р: , , , . В рецептуру протекторных резин вводят также различные виды восков, являющиеся для них физическим противостарителем (антиозонантом). Пластификаторы шинных резин – это большая группа продуктов переработки нефти (мазуты, битумы, масла, парафины и церезины, смолы), являющихся мягчителями, так как не влияют на их морозостойкость и всегда снижают их прочностные свойства и твёрдость. Для повышения клейкости резиновых смесей используют в количестве до 5 мас.ч. на 100 мас.ч. каучуков кумарон-инденовые и стирол-инденовые смолы - продукты полимеризации остатков коксохимического производства, а также сосновую смолу и получаемую из неё канифоль. Последняя представляет собой смесь изомерных смоляных кислот, которую диспропорционируют или гидрируют для удаления двойных связей с целью повышения теплостойкости каучуков. Они вместе с парафинами и жирными кислотами (продукты омыления растительных и животных жиров) ограниченно растворяются в каучуках, но как технологические добавки облегчают переработку резиновых смесей. Жирные кислоты и парафины как «межструктурные» пластификаторы, облегчающие диспергирование ингредиентов, называют ещё диспергаторами. Наполнители шинных резин - активные марки печного техуглерода (сажи) - продукта термического разложения углеводородного сырья, состоящего из агрегатов химически сросшихся сферических частиц. Первичная структурность техуглерода определяется размерами и формой агрегатов, а вторичная структурность – способностью их входить в состав более крупных образований – агломератов. С ростом разветвлённости (открытости) агрегатов и количества частиц в них увеличивается объем межагрегатных пустот в агломератах, которые при диспергировании заполняются сегментами окклюдируемогоэластомера. По стандарту АSTM D1765 (США) буквенный знак марки техуглерода информирует о его влиянии на скорость вулканизации смесей (N-нормальная, S-замедленная), а в классификации по ГОСТ 7885-86 - на способ его производства (К-канальный, П-печной). Первая цифра трёхзначного числа марки указывает на его дисперсность (удельную поверхность по адсорбции азота), а третья – на его структурность (табл.1.9), которую оценивают показателем абсорбции дибутилфталата (ДБФ). Разница между удельной общей (D4820) и внешней (D5816) поверхностью свидетельствует о степени пористости техуглерода, а между иодным числом и внешней поверхностью – о химической активности. Насыпная плотность влияет на транспортирование и переработку техуглерода, а повышают этот показатель путём гранулирования. Таблица 1.9.
Дата добавления: 2014-10-22; Просмотров: 657; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |