Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Энергия ионизации и сродство к электрону




Наиболее ха­рактерным химическим свойством металлов является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, а неметаллы, наоборот, характеризуются способностью присоединять электроны с образованием отрицательных ионов. Для отрыва электрона от атома с превраще­нием последнего в положительный ион нужно затратить некото­рую энергию, называемую энергией ионизации.

Энергию ионизации можно определить путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наи­меньшее напряжение поля, при котором скорость электронов ста­новится достаточной для ионизации атомов, называется потен­циалом ионизации атомов данного элемента и выражается в вольтах.

При затрате достаточной энергии можно оторвать от атома два, три и более электронов. Поэтому говорят о первом потенциале ионизации (энергия отрыва от атома первого электрона), втором потенциале ионизации (энергия от­рыва второго электрона) и т.д. По мере последовательного уда­ления электронов атома, положительный заряд образующегося

иона возрастает. Поэтому для отрыва каждого следующего электрона требуется большая затрата энергии, иначе говоря, после­довательные потенциалы ионизации атома возрастают (табл. 3).

 

 

 

Данные табл. 3 показывают, что от атома лития сравнительно легко отрывается один электрон, от атома бериллия — два, от атома бора — три, от атома углерода — четыре. Отрыв же после­дующих электронов требует гораздо большей затраты энергии. Это соответствует нашим представлениям о строении рассматри­ваемых атомов. Действительно, у атома лития во внешнем элек­тронном слое размещается один электрон, у атома бериллия — 2, бора — 3, углерода — 4. Эти электроны обладают более высокой энергией, чем предшествующего слоя, и поэтому их отрыв от атома требует сравнительно небольших энергетических затрат. При переходе же к следующему электронному слою энергия ионизации резко возрастает.

Величина потенциала ионизации может служить мерой большей или меньшей «металличности» элемента: чем меньше потен­циал ионизации, чем легче оторвать электрон от атома, тем сильнее должны быть выражены металлические свойства элемента.

Рассмотрим с этой точки зрения, как изменяются первые по­тенциалы ионизации с увеличением атомного номера у атомов одной и той же подгруппы периодической систем. (табл.4). Как видно, с увеличением порядкового номера элемента потенциалы ионизации уменьшаются, что свидетельствует об усилении металлических и, соответственно, ослаблении неметаллических свойств.

 

 

 

 

Эта закономерность связана с возрастанием радиусов атомов. Кроме того, увеличение числа промежуточных электронных слоев, расположенных между ядром атома и внешними электронами, приводит к более сильному экра­нированию ядра, т.е. к уменьшению его эффективного заряда. Оба эти фактора (растущее удаление внешних электронов от ядра и уменьшение его эффективного заряда) приводят к ослаблению связи внешних электронов с ядром и, следовательно, к уменьше­нию потенциала ионизации.

У электронов одного и того же периода при переходе от ще­лочного металла к благородному газу заряд ядра постепенно воз­растает, а радиус атома уменьшается. Поэтому потенциал иони­зации постепенно увеличивается, а металлические свойства ослабевают. Иллюстрацией этой закономерности могут служить первые потенциалы ионизации элементов второго и третьего пе­риодов (табл. 5).

 

 

 

 

Из данных табл.5 видно, что общая тенденция к возрастанию энергии ионизации в пределах периода в некоторых случаях на­рушается. Так, потенциалы ионизации атомов бериллия и азота выше, чем атомов следующих за ними элементов бора и кисло­рода; аналогичное явление наблюдается и в третьем периоде при переходе от магния к алюминию и от фосфора к сере. При этом повышенные значения потенциалов ионизации наблюдаются либо у атомов с целиком заполненным внешним энергетическим под­уровнем (бериллий и магний)

 

 

 

 

либо у атомов, у которых внешний энергетический подуровень за­полнен ровно наполовину, так что каждая орбиталь этого под­уровня занята одним электроном (азот и фосфор);

 

 

 

 

Эти и подобные факты служат экспериментальным основанием положения, согласно которому элек­тронные конфигурации, соответствующие полностью или ровно наполовину занятым подуровням, обладают повышенной энергети­ческой устойчивостью.

Как отмечалось выше, атомы могут не только отдавать, но и присоединять электроны. Энергия, выделяющаяся при присоеди­нении электрона к свободному атому, называется сродством атома к электрону. Сродство к электрону, как и энергия ионизации, обычно выражается в электронвольтах. Так, сродство к электрону атома водорода равно 0,75 эВ, кислорода— 1,47 эВ, фтора — 3,52 эВ.

Сродство к электрону атомов металлов, как правило, близко к нулю или отрицательно; из этого следует, что для атомов большинства металлов присоединение электронов энергетически невыгодно. Сродство же к атому неметаллов всегда поло­жительно и тем больше, чем ближе к благородному газу распо­ложен неметалл в периодической системе; это свидетельствует об усилении неметаллических свойств по мере приближения к концу периода.

Лекция: Химическая связь.




Поделиться с друзьями:


Дата добавления: 2014-10-23; Просмотров: 1039; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.127 сек.