КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основні положення
ТЕМА 1. ОДНОФАКТОРНА ЕКОНОМЕТРИЧНА МОДЕЛЬ Серед багаточисленних зв’язків між економічними показниками завжди можна виділити такий показник, вплив якого на результативну ознаку є основним, найбільш важливим. Щоб виміряти цей зв’язок кількісно, необхідно побудувати однофакторну економетричну модель (просту модель). Загальний вигляд такої моделі:
де Аналітична форма цієї моделі може бути різною залежно від економічної сутності зв’язків. Найбільш поширені форми залежностей:
де Неважко переконатись, що наведені нелінійні форми залежностей за допомогою елементарних перетворень приводяться до лінійних. Якщо припустити, що однофакторна економетрична модель є лінійною:
в якій стохастична складова (залишки) має нульове математичне сподівання та постійну дисперсію, то параметри моделі можна оцінити на основі звичайного методу найменших квадратів (1МНК). В основі методу 1МНК лежить принцип мінімізації суми квадратів залишків моделі. Реалізація цього принципу дає можливість отримати систему нормальних рівнянь:
В даній системі n – кількість спостережень, Розв’язавши систему нормальних рівнянь, одержимо оцінки невідомих параметрів моделі
Достовірність побудованої економетричної моделі можна перевірити, користуючись елементами дисперсійного аналізу. Перш за все слід розрахувати залишки моделі
та знайти їх дисперсію:
Далі необхідно визначити стандартну помилку кожного параметра моделі:
Обчислюємо дисперсію результативної ознаки:
На основі коефіцієнта детермінації
Оскільки коефіцієнт детермінації Коефіцієнт кореляції Існує так звана шкала Чеддока (табл.. 1.1), яка дозволяє дати якісну оцінку силі зв’язку між показниками за розрахованим коефіцієнтом кореляції. При Таблиця 1.1 Шкала Чеддока
Якщо
Дата добавления: 2014-10-23; Просмотров: 498; Нарушение авторских прав?; Мы поможем в написании вашей работы! |