Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Следствия




а) Если U (x), V (x) и W (x) дифференцируемы в т. х, то функция (U (x) × V (x) × W (x)) дифференцируема в т. х и ее производная вычисляется по формуле:

(U × V × W)' = UV × W + U × VW + U × V × W '.

б) Производная постоянной, умноженной на дифференцируемую функцию, равна этой постоянной, умноженной на производную функции:

(C× U (x))' = C× U ' (x).

Теорема 5. Если функции U (x) и V (x) дифференцируемы в точке х и V (x)#0, то функция дифференцируема в точке х и ее производная вычисляется по формуле: .

Доказательство. Рассмотрим функцию . Найдем ее приращение

Разделим D y на D x и перейдем к пределу при D x ®0:

 

Значит, .

Теорема доказана.

Теорема 6 (производная сложной функции)

Если функция f (u) дифференцируема в точке u, а функция u (x) дифференцируема в точке x, причем u = u (x), тогда сложная функция f (u(x)) дифференцируема в точке x и ее производная вычисляется по формуле:

(f (u (x)))' = f '(u) × u ' (x).

Доказательство. Рассмотрим функцию y = f (U). Так как функция f (u) дифференцируема в точке u, то ее приращение можно записать в виде:

, где

Разделим на D x и перейдем к пределу при D x ®0:

(если D x ®0, то D u ®0, т.к. u (x) дифференцируема, а значит непрерывна)

Значит: (f (u (x)))' = f ’(u) × u ' (x).

Теорема доказана.




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 620; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.