КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Асимптоты плоской кривой
ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ФУНКЦИЙ
Определение 1. Если точка M(x; y) перемещается по кривой y = f (x) так, что хотя бы одна из координат точки стремиться к ¥ и при этом расстояние от этой точки до некоторой прямой стремиться к 0, то эта прямая называется асимптотой кривой y = f(x). Асимптоты бывают двух видов: вертикальные и наклонные. Определение 2. Прямая x = a называется вертикальной асимптотой кривой y = f (x), если хотя бы один из односторонних пределов или равен +¥ или -¥ Замечание. Если прямая x = a является вертикальной асимптотой кривой y = f (x), то в точке x = a функция f (x) имеет разрыв второго рода. Наоборот. Если в точке x = a функция f (x) имеет разрыв второго рода, то прямая x = a является вертикальной асимптотой кривой y = f (x).
Определение 3. Прямая y = k x + b называется наклонной асимптотой кривой y = f (x) при x ®+¥ (или x ®-¥), если функцию f (x) можно представить в виде: , где a(x) – бесконечно малая функция при x ®+¥ (или x ®-¥).
Теорема 1. Для того чтобы кривая y = f (x) имела наклонную асимптоту при x ®+¥ (или x ®-¥) необходимо и достаточно существования двух конечных пределов: и Доказательство. Ограничимся случаем x ®+¥. Необходимость. Пусть y = k x + b – наклонная асимптота при x ®+¥ кривой y = f (x). Тогда функция f (x) представима в виде: , где при . Убедимся в существовании конечных пределов: . необходимость доказана. Достаточность. Пусть существуют конечные пределы и . Тогда по свойству конечных пределов второй предел можно переписать в виде: , где a(x) – бесконечно малая при x ®+¥. Отсюда получаем: , где при . Достаточность доказана.
Пример 1. Найти асимптоты кривой Решение. 1) D(y) = (-¥;-1) È (-1;1) È (1;+ ¥). 2) Точки x = -1 и x = 1 являются точками разрыва второго рода, так как:
Поэтому прямые x = -1 и x = 1 являются вертикальными асимптотами. 3) Вычислим предел: , k = 1.
Отсюда следует, что при x ®+¥ прямая y = 1× x +0, т.е. y = x - наклонная асимптота при x®+¥. Найдем наклонную асимптоту при x ®-¥. Вычисляя те же пределы при x ®-¥, получим k = 1 и b = 0, то есть прямая y = x является наклонной асимптотой при x® -¥. Ответ: x = ± 1 – вертикальные асимптоты y = x – наклонная асимптота при x ® ±¥.
Дата добавления: 2014-10-15; Просмотров: 1046; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |