Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Уравнения 2-й степени в пространстве




Определение. Уравнением второго порядка в пространстве (уравнением поверхности 2-го порядка) называют уравнение вида

a11x2+a22y2+a33z2+2a12xy+2a13xz+2a23yz+a41x+a42y+a43z+ a44=0 (7.1)

Мы познакомимся только с уравнением (6.3), в котором отсутствуют произведения текущих координат. В этом случае имеется возможность выделить полные квадраты по переменным и получить уравнение поверхности в каноническом виде. Последние и будем изучать более подробно.

Для исследования канонических уравнений поверхностей второго порядка используют метод сечений. В самом простом виде он выглядит так: проводят серии плоскостей, параллельных координатным плоскостям и по результатам (виду сечений) делают вывод о форме поверхности. Эта работа похожа на работу томографа при исследовании внутренних органов человека в медлабораториях или работу топографа при топографической съемке местности.

Реализуем метод при построении поверхности ++=1

Рассечем поверхность плоскостями z=h. Тогда в сечении получим

,

Из этой системы видно, что h не может превышать z=hс. Что означает – поверхность расположена между двумя плоскостями – выше h=-c и ниже h=c. Более того, в сечениях получаются эллипсы, самый большой из которых расположен в плоскости z=0. Чем дальше от плоскости хОу, тем меньше эллипс. И на высоте с эллипс вырождается в точку.

Если провести аналогичные серии плоскостей. параллельных другим координатным плоскостям, то получим похожие выводы. Следовательно, поверхность образована скольжением эллипсов по эллипса и называется трехосным эллипсоидом.




Поделиться с друзьями:


Дата добавления: 2014-10-23; Просмотров: 348; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.