Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вычисление момента инерции при повороте осей. Главные оси инерции и главные моменты инерции




Пусть известны моменты инерции бесконечно малой фигуры dF относительно центральных осей Z,y;

Jz=∫Fy2dF-момент инерции относительно оси z

Jy=∫Fz2dF-момент инерции относительно оси y

Jyz=∫FzydF

Повернем оси у,z на угол α против часовой стрел- ки, считая угол поворота осей в этом направлении положительным. Определим моменты инерции сечения относительно повернутых осей z1,y1;

Jy1z1=∫Fz1y1dF

Jy1=∫Fz21dF

Jz1=∫Fy21dF

Координаты произвольной элементарной площадки в новых осях z1,y1 выражаются через координаты z,y прежней системы осей следующим образом;

Z1=OC+AD=zcosα+ysinα

y1=CB=BD-EA=ycosα-zsinα

Подставим эти значения в формулы моментов инерции (выше) и проинтегрируем почленно;

Jz1=∫F(ycosα-zsinα)2dF= =c =cos2α∫Fy2dF+sin2α∫FZ2dF- -sin2α∫FyzdF

Jy1=∫F(zcosα+ysinα)2dF= =sin2α∫Fy2dF+cos2α∫FZ2dF+sin2α∫FzydF

Jy1z1=∫F(zcosα+ysinα)(ycosα-zsinα)dF=(cos2α-sin2α) ∫FzydF+(1/2)sin2α(∫Fz2dF-∫Fz2dF)

Окончательно находим;

Jz1=Jzcos2α+Jysin2α-Jzysin2α

Jy1=Jycos2α+Jzsin2α-Jzysin2α

Jz1y1=Jzycos2α-(1/2)(Jy-Jz)· ·sin2α

Опр. гл. осей и гл. моментов инерции.

Наибольшее значение имеют главные центральные оси, центробежный момент инерции относительно которых равен нулю.

JUV=0

Чтобы определить положение главных центральных осей повернем произвольную начальную систему центральных осей z,y на некоторый угол α0, при котором центробежный момент инерции становится равным нулю;

Jz1y1=JVU=0

Тогда из формулы

Jz1y1=Jzycos2α-(1/2)(Jy-Jz)·sin2α

получим

Jz1y1=Jzycos2α0-(Jy -Jz)2(sin2α0)

Откуда

tg2α0=2Jzy/Jy-Jz

Откуда найдем два угла (острый и тупой) отличающиеся на 90 градусов. Откладываем от оси z и получаем положение оси U (ось V перпендикулярна U)Значения главных моментов инерции из формул;

Jz1=Jzcos2α+Jysin2α- Jzysin2α

Jy1=Jycos2α+Jzsin2α-Jzysin2α, прехода к повернутым осям, приняв α=α0

Jz1=Jzcos2α0+Jysin2α0 -Jzysin2α0

Jy1=Jycos2α0+Jzsin2α0-Jzysin2α0

Если исключить α0 из трех уравнений (Jz1,Jy1, Jz1y1), то получим формулу для вычисления моментов инерции относительно главных центральных осей.

JU=1/2[(Jz+Jy)±√(Jz-Jy)2+4J2zy]

JV=1/2[(Jz+Jy)±√(Jz -Jy)2+4J2zy]

Свойства главных центральных осей;

1)относительно этих осей центробежный момент инерции равен 0

2)относительно V,U моменты инерции имеют экстремальные величины

3)если плоская фигура имеет ось симметрии, то эта ось одна из главных центральны, вторая проходит через центр тяжести фигуры и перпендикулярна первой.




Поделиться с друзьями:


Дата добавления: 2014-10-31; Просмотров: 321; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.