КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Мгновенная скорость гармонического колебания
V = = хмcos(t + o) (3)
Ускорение: а == - 2хмsin(t + o) = - 2х (4)
Уравнение + 2х = 0 (5)
называется дифференциальным уравнением гармонического колебания. Решение этого уравнения приводится к виду (1).
Гармонические колебания происходят под действием силы
F = ma = - m2х = - кх, где к = m2, (6)
пропорциональной смещению и направленной к положению равновесия. Ею может быть, например, сила упругости (пружинный маятник). Возвращающие силы могут иметь и иную, не упругую природу. В этих случаях (математический маятник) они называются квазиупругими силами (от латинского quasi – как бы, якобы). Так как к = m2=, то период гармонического колебания можно вычислить по формуле
T= 2 (7)
Рассмотрим механическую колебательную систему, называемую математическим маятником. Математическим маятником называется материальная точка, под- вешенная на невесомой и нерастяжимой нити - рисунок 1.
F = - mg sin sin = , а величина силы
F = - = - кх,
т.е. при малых углах отклонения силы, вызывающие колебания, будут пропорциональны смещению, направлены к положению равновесия, и, следовательно, колебания маятника будут гармоническими. Учитывая, что к = mg/l, то период колебаний математического маятника можно рассчитать по следующей формуле:
T =2 (8)
Из формулы (8) следует, что период колебаний математического маятника зависит от длины маятника l и ускорения силы тяжести g, но не зависит от массы маятника m и амплитуды колебаний x m . ОПИСАНИЕ УСТАНОВКИ И МЕТОДОВ ИЗМЕРЕНИЯ
Определив период колебания математического маятника известной длины, можно рассчитать величину ускорения силы тяжести в данном месте Земли (ускорение силы тяжести зависит от географической широты места) по формуле g = ( 9)
Математический маятник, применяемый в этой работе, представляет собой массивный шар небольшого радиуса (по сравнению с длиной маятника), подвешенный на двойной нити для того, чтобы колебания происходили возможно более строго в одной плоскости. Расстояние от точки подвеса маятника до пола L = З,20 м, радиус шара R = 3,95 см.
Дата добавления: 2014-10-31; Просмотров: 622; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |