КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Недоопределенные системы
0.3413 0.4760 1.0000 0.1003 1.0000 0.2019 1.0000 0.3329 1.0000 0.4493 1.0000 0.7408 1.0000 1.0000 2.3 0.50 1.6 0.55 1.1 0.60 0.8 0.63 0.3 0.72 0.0 0.82 T y Переопределенные системы 6 0 -6 19 -3 -1 Квадратные системы Наиболее часто встречающейся ситуацией является квадратная матрица коэффициентов A и одномерный вектор-столбец b справа, т.е. Ax = b. Решение x = A\b имеет при этом тот же ра-змер, что и вектор b. Например, x = A\u x = -12 где матрица А есть приведенная выше матрица Паскаля. Легко удостовериться, что A*x в точности равно вектору u (численные значения этого вектора даны выше). Если A и B являются квадратными и имеют одинаковый размер, то X = A\B имеет тот же ра-змер, например
X = A\B X = -17 4 13
Легко убедиться, что A*X в точности равно B. Оба этих примера имеют точное решение в виде целых чисел. Это связано с тем, что в каче-стве матрицы коэффициентов была выбрана матрица Паскаля pascal(3), чей детерминант равен единице. Далее будут рассмотрены примеры влияния ошибок округления, возникаю-щих в более реальных системах. Квадратная матрица A является сингулярной, если ее столбцы не являются линейно незави-симыми. Если A – сингулярна, то решение AX = B или не существует, или не является един-ственным. Оператор \, A\B, выдает предупреждающее сообщение, если матрица A близка к сингулярной и сообщение об ошибке, если определено равенство нулю детерминанта матри-цы А.
Переопределенные системы совместных линейных уравнений часто встречаются в задачах аппроксимации экспериментальных данных при помощи различных эмпирических кривых. Рассмотрим следующий гипотетический пример. Величина y измеряется при различных зна-чениях времени t, что дает следующие результаты
Эти данные могут быть введены в MATLAB при помощи выражений:
t = [0.3.8 1.1 1.6 2.3]'; y = [0.82 0.72 0.63 0.60 0.55 0.50]';
Данные могут быть аппроксимированы при помощи убывающей экспоненциальной функ-ции.
y(t) = c1 + c2 e-t
Это уравнение показывает, что вектор y может быть представлен в виде линейной комбина-ции двух векторов, один из которых является постоянным вектором, содержащим все едини-цы, а второй вектор имеет компоненты e-t. Неизвестные коэффициенты c1 и c2 могут быть найдены подгонкой кривых по методу наименьших квадратов,которая основана на миними-зации суммы квадратов отклонений экспериментальных данных от модели. Мы имеем шесть уравнений с двумя неизвестными, представленными 6х2 матрицей
E = [ones(size(t)) exp(-t)] E = Решение методом наименьших квадратов находится при помощи оператора \:
c = E\y c =
Иными словами, подгонка методом наименьших квадратов дает
y(t) = 0.476 + 0.3413 e-t
Следующие выражения оценивают модель при равномерно распределенных моментах време-ни (с шагом 0.1), а затем строят график вместе с результатами экспериментальных данных.
T = (0: 0.1: 2.5)'; Y = [ones(size(T)) exp(-T)]*c; plot(T, Y, '-', t, y, 'o')
Можно видеть, что значения E*c не совсем точно совпадают со значениями эксперименталь-ных данных y, но эти отклонения могут быть сравнимы с ошибками измерений. Прямоугольная матрица A называется матрицей неполного ранга, если ее столбцы линейно-независимы. Если матрица A имеет неполный ранг, то решение AX = B не является единст-венным. Оператор \ при этом выдает предупреждающее сообщение и определяет основное решение, которое дает минимально возможное число ненулевых решений. Недоопределенные системы линейных уравнений содержат больше неизвестных чем урав-нений. Когда они сопровождаются дополнительными ограничениями, то становятся сферой изучения линейного программирования. Сам по себе, оператор \ работает только с системой без ограничений. При этом решение никогда не бывает единственным. MATLAB находит ос-новное решение, которое содержит по меньшей мере m ненулевых компонент (где m - число уравнений), но даже это решение может быть не единственным. Ниже приводится пример, где исходные данные генерируются случайным образом. R = fix (10*rand(2,4)) R =
Дата добавления: 2014-10-15; Просмотров: 452; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |