КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Розглянемо застосування методу потенціалів для розв’язування транспортних задач, наведених далі
Задача 1. Компанія контролює три фабрики А 1, А 2, А 3, здатні виготовляти 150, 60 та 80 тис. од. продукції щотижня. Компанія уклала договір із чотирма замовниками В 1, В 2, В 3, В 4, яким потрібно щотижня відповідно 110, 40, 60 та 80 тис. од. продукції. Вартість виробництва та транспортування 1000 од. продукції замовникам з кожної фабрики наведено в таблиці.
Визначити для кожної фабрики оптимальний план перевезення продукції до замовників, що мінімізує загальну вартість виробництва і транспортних послуг. Побудова математичної моделі. Нехай xij — кількість продукції, що перевозиться з і -ї фабрики до j -го замовника . Оскільки транспортна задача за умовою є збалансованою, закритою , то математична модель задачі матиме вигляд Економічний зміст записаних обмежень полягає ось у чому: уся вироблена на фабриках продукція має вивозитися до замовників повністю. Аналогічні обмеження можна записати відносно замовників: продукція, що надходить до споживача, має повністю задовольняти його попит. Математично це записується так: Загальні витрати, пов’язані з виробництвом і транспортуванням продукції, складаються як добуток обсягу перевезеної продукції та питомої вартості перевезень за відповідним маршрутом і за умовою задачі мають бути мінімальними. Тому Z = 4 × x 11 + 4 × x 12 + 2 × x 13 + 5 × x 14 + 5 × x 21 + 3 × x 22 + x 23 + 2 × x 24 + 2 × x 31 + x 32 +4 × x 33 +2× x 34® min. У цілому математичну модель поставленої задачі можна записати так: Z = 4 x 11 + 4 x 12 + 2 x 13 + 5 x 14 + 5 x 21 + 3 x 22 + x 23 + 2 x 24 + 2 x 31 + x 32 +4 x 33 +2 x 34 ® min Розв’язування. Розв’язування задачі подамо в таблицях, які назвемо транспортними. Перший опорний план задачі побудуємо методом мінімальної вартості.
Тому Z = 4 × 110 + 5 × 40 + 1 × 60 + 1 × 40 + 2 × 40 = 820 ум. од. Перший опорний план транспортної задачі вироджений, оскільки кількість заповнених клітинок у таблиці дорівнює п’яти, а (m + n – 1) = 3 + 4 – 1 = 6. Для подальшого розв’язування задачі необхідно в одну з порожніх клітинок записати «нульове перевезення» так, щоб не порушити опорності плану, тобто можна зайняти будь-яку вільну клітинку, яка не утворює замкненого циклу. Наприклад, заповнимо клітинку А 2 В 4. Тепер перший план транспортної задачі є невиродженим, і його можна перевірити на оптимальність за допомогою методу потенціалів. На основі першої умови оптимальності ui + vj = cij складемо систему рівнянь для визначення потенціалів плану: Записана система рівнянь є невизначеною, і один з її розв’язків дістанемо, якщо, наприклад, v 4 = 0. Тоді всі інші потенціали однозначно визначаються: u 1 = 5, u 2 = 2, u 3 = 2, v 1 = –1, v 2 = –1, v 3 = –1. Далі згідно з алгоритмом методу потенціалів перевіряємо виконання другої умови оптимальності ui + vj ≤ cij (для порожніх клітинок таблиці): А 1 B 2: u 1 + v 2 = 5 + (–1) = 4 = 4; А 1 B 3: u 1 + v 3 = 5 + (–1) = 4 > 2; А 2 B 1: u 2 + v 1 = 2 + (–1) = 1 < 5; А 2 B 2: u 2 + v 2 = 2 + (–1) = 1 < 3; А 3 B 1: u 3 + v 1 = 2 + (–1) = 1 < 2; А 3 B 3: u 3 + v 3 = 2 + (–1) = 1 < 4. Умова оптимальності не виконується для клітинки А 1 B 3. Порушення D13 = (u 1 + v 3) – c 13 = 4 – 2 = 2 записуємо в лівому нижньому кутку відповідної клітинки. Перший опорний план транспортної задачі є неоптимальним. Тому від нього необхідно перейти до другого плану, змінивши співвідношення заповнених і порожніх клітинок таблиці. Потрібно заповнити клітинку А 1 B 3, в якій є єдине порушення умови оптимальності. Ставимо в ній знак «+». Для визначення клітинки, що звільняється, будуємо цикл, починаючи з клітинки А 1 B 3, та позначаємо вершини циклу почергово знаками «–» і «+». Тепер необхідно перемістити продукцію в межах побудованого циклу. Для цього у вільну клітинку А 1 B 3 переносимо менше з чисел хij, які розміщуються в клітинках зі знаком «–». Одночасно це саме число хij додаємо до відповідних чисел, що розміщуються в клітинках зі знаком «+», та віднімаємо від чисел, що розміщуються в клітинках, позначених знаком «–». У даному випадку , тобто . Виконавши перерозподіл продукції згідно із записаними правилами, дістанемо такі нові значення: клітинка А 1 B 3 — 40 од. продукції, А 2 B 3 – (60 – 40) = 20 од., А 2 B 4 – (0 + 40) = 40 од. Клітинка А 1 B 4, звільняється і в новій таблиці буде порожньою. Усі інші заповнені клітинки першої таблиці, які не входили до циклу, переписують у другу таблицю без змін. Кількість заповнених клітинок у новій таблиці також має відповідати умові невиродженості, тобто дорівнювати (n + m – 1). Отже, другий опорний план транспортної задачі матиме такий вигляд:
Тому Z 2 = 4 × 110 + 2 × 40 + 1 × 20 + 2 × 40 + 1 × 40 + 2 × 40 =740 ум. од. Новий план знову перевіряємо на оптимальність, тобто повторюємо описані раніше дії. Другий план транспортної задачі також неоптимальний (порушення для клітинки А 3 B 1). За допомогою побудованого циклу виконаємо перехід до третього опорного плану транспортної задачі і дістанемо таку таблицю:
Тому Z 3 = 4 × 90 + 2 × 60 + 2 × 60 + 2 × 20 + 1 × 40 + 2 × 20 =720 ум. од. Перевірка останнього плану на оптимальність за допомогою методу потенціалів показує, що він оптимальний. Тому ; За оптимальним планом перевезень перший замовник отримує 90 тис. од. продукції з першої фабрики та 20 тис. од. — з третьої. Другий споживач задовольняє свій попит за рахунок виробництва та перевезення 40 тис. од. продукції з третьої фабрики і т. д. При цьому загальна вартість виробництва та перевезення всієї продукції є найменшою і становить 720 ум. од.
Задача 2. Районне агропромислове об’єднання складається з трьох господарств А 1, А 2, А 3, що спеціалізуються на вирощуванні ранніх овочів. Кожне господарство щотижня збирає відповідно 50, 30 та 20 т овочів, які необхідно відправляти в чотири магазини B 1, B 2, B 3, B 4. Магазини бажають отримувати ранні овочі в кількості відповідно 30, 30, 10 та 20 т. Вартість перевезення 1 т овочів від господарства до магазинів наведено в таблиці.
Визначити такий план перевезення овочів до магазинів, за якого загальні витрати агропромислового об’єднання будуть найменшими. Побудова математичної моделі. Нехай хij — кількість тон овочів, які перевозять з і -го господарства j -го магазину (; ). Тоді економіко-математична модель поставленої задачі має такий вигляд: Z = 2 x 11 + 3 x 12 + 4 x 13 + 2 x 14 + 5 x 21 + 7 x 22 + x 23 + 4 x 24 + 9 x 31 + 4 x 32 +3 x 33 +2 x 34 ® min, за обмежень Знак «≤» у перших трьох обмеженнях задачі пояснюється тим, що за умовою транспортна задача є відкритою: У такій ситуації, коли попит менший за пропозицію, частина овочів залишиться в господарствах і фактично буде вивезено менше, ніж зібрано. Розв’язування. Щоб визначити оптимальний план поставленої задачі, її необхідно збалансувати, тобто звести до закритого типу. Це виконується шляхом уведення додаткового, умовного споживача B 5 із попитом B 5 = 100 – 90 = 10 т. Вартість перевезення одиниці продукції до умовного споживача дорівнює нулю. Перший опорний план транспортної задачі побудуємо методом подвійної переваги.
Перший опорний план є виродженим, і тому в клітинку, наприклад A 2 B 4, поставимо нуль і вважатимемо її заповненою. Перевірка плану за допомогою потенціалів показує, що він є неоптимальним. Перехід до другого опорного плану виконується шляхом заповнення клітинки A 3 B 2 згідно із побудованим циклом. Зазначену клітинку включено до циклу тому, що в разі кількох однакових найбільших порушень (D21 = D32 = 1) заповнюють таку клітинку таблиці, яка має меншу вартість перевезення одиниці продукції (с 32 < c 21). Другий план транспортної задачі наведемо у вигляді таблиці:
Умова оптимальності для цього опорного плану виконується, і тому можна записати: ; Z min = 2 × 30 + 3 × 20 + 1 × 10 + 4 × 10 + 4 × 10 + 2 × 10 = 320 ум. од. Згідно з оптимальним планом потреба магазинів у ранніх овочах задовольняється завдяки повному вивезенню продукції з першого та третього господарств і лише частково — з другого (залишок дорівнює 10 т). У цьому разі загальна вартість усіх перевезень буде найменшою і становитиме 230 ум. од. Але виявляється, що розглянута транспортна задача має ще один альтернативний оптимальний план. Ознакою цього є виконання умови оптимальності для порожньої клітинки: ui + vj = cij. В останній таблиці це справджується для порожньої клітинки A 2 B 1: u 1 + v 1 = 0 + 5 = с 21 = 5. Щоб отримати альтернативний оптимальний план, достатньо заповнити зазначену клітинку таблиці, виконавши перерозподіл продукції за таким циклом: Наведемо транспортну таблицю, що відповідає другому оптимальному плану задачі.
Тому ; Z min = 2 × 20 + 3 × 30 + 5 × 10 + 1 × 10 + 2 × 20 = 230 ум. од. Другий оптимальний план задачі формулюється так. Перевезти з першого господарства 20 т овочів до першого магазину та 30 т — до другого; з другого господарства — 10 т до першого магазину та 10 т овочів до третього, залишаючи невивезеними 10 т, а також з третього господарства до четвертого магазину — 20 т овочів. У цьому разі загальні транспортні витрати становитимуть 230 ум. од. і також будуть найменшими. Задача 3. Три нафтопереробних заводи А 1, А 2, А 3, із максимальною щоденною продуктивністю відповідно 30, 20, 15 тис. т бензину забезпечують чотири бензосховища B 1, B 2, B 3, B 4, потреба яких становить відповідно 10, 20, 25 та 20 тис. т. бензину. Бензин транспортується до бензосховищ за допомогою трубопроводів. Вартість перекачування 1000 т бензину від заводів до сховищ (в умовних одиницях) наведено в таблиці.
Cформулювати та розв’язати відповідну транспорту задачу з неодмінним виконанням таких умов: 1) повністю задовольнити попит бензосховища B 4; 2) недопостачання бензину до сховища B 2 штрафується 5 ум. од. вартості за кожні 1000 т бензину; 3) у зв’язку з виконанням ремонтних робіт на трубопроводі постачання бензину із заводу А 1 до сховища B 1 тимчасово неможливе. Розв’язування. Визначимо, до якого типу належить транспортна задача: , . За умовою транспортна задача є відкритою, незбалансованою. Зведення її до закритого типу потребує введення додаткового фіктивного постачальника А 4 з продуктивністю а 4 = 75 – 65 = 10 (тисяч тон). Кількість бензину, що «відправляється» фіктивним заводом до бензосховищ, в оптимальному плані означатиме обсяг незадоволеного попиту в цьому пункті призначення. Тому для виконання першої додаткової вимоги задачі необхідно блокувати клітинку фіктивного постачальника А 4 та споживача B 4, записавши в ній досить високу вартість М. Тоді в оптимальному плані транспортної задачі ця клітинка обов’язково буде незаповненою. Виконання другої умови задачі забезпечується тим, що в рядку фіктивного постачальника у стовпчику B 2 вартість транспортування 1000 т бензину дорівнюватиме 5 ум. од. замість нуля. Оскільки неможливо транспортувати бензин від заводу А 1 до сховища B 1, необхідно також блокувати маршрут А 1 B 1. Для цього в зазначеній клітинці замість с 11 = 4 записуємо величину М. З огляду на викладене таблиця для першого плану транспортної задачі має такий вигляд (початковий опорний план побудовано методом апроксимації Фогеля).
Отже, перший опорний план задачі неоптимальний. Найбільше порушення умови оптимальності відповідає порожнім клітинкам А 4 B 1 та А 3 B 3 таблиці. Оскільки обидві вони мають однаковий коефіцієнт с 41 = с 43 = 0, то для заповнення можна вибрати будь-яку з них, наприклад А 4 B 1. Перехід до другого плану виконується за таким циклом: При цьому заблокована клітинка А 4 B 4 звільняється. Подальше розв’язування задачі подано у вигляді таблиць.
В останній таблиці маємо оптимальний план транспортної задачі. Тому , Z min = 5 × 5 + 5 × 25 + 5 × 20 + 3 × 15 = 245 ум. од. Через незбалансованість поставленої транспортної задачі спостерігатиметься недопостачання бензину до першого бензосховища в кількості 10000 т. Загальні витрати на транспортування в цьому разі будуть найменшими і становитимуть 245 ум. од. Альтернативний оптимальний план дістанемо, заповнивши клітинку А 4 В 3 (для неї u 4 + v 3 = c 43) згідно з таким циклом: Тоді можна записати: , Z min = 5 × 15 + 3 × 15 + 5 × 20 + 1 × 10 + 3 × 15 = 245 ум. од. Мінімальні загальні витрати на транспортування в розмірі 245 ум. од. відповідають також ще одному оптимальному плану задачі, згідно з яким третє бензосховище отримає на 10000 т бензину менше, ніж потребує. Існування двох альтернативних оптимальних планів розглянутої транспортної задачі розширює можливості стосовно остаточного прийняття рішення.
Дата добавления: 2014-10-31; Просмотров: 915; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |