КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Статистические показатели динамики
Сопоставимость в рядах динамики Основным условием для получения правильных выводов при анализе рядов динамики является сопоставимость его элементов Показатели ряда динамики, подлежащие сопоставлению, должны быть однородны по экономическому содержанию. Основные условия, обеспечивающие сопоставимость в рядах динамики: · единые единицы измерения (цены берутся за определенный период); · единство территории; · единство методологии сбора, учета и обобщения информации. Для того чтобы привести уровни ряда динамики к сопоставимому виду, иногда приходится прибегать к приему, который называется «смыкание рядов динамики». Под смыканием понимают объединение в один ряд (более длинный) двух или несколько рядов динамики, уровни которых исчислены по разной методологии или территориальным границам. Для осуществления смыкания необходимо, чтобы для одного из периодов (переходного) имелись данные, исчисленные по разной методологии (или в разных границах). При анализе рядов динамики можно решить следующие основные задачи: 1.определить интенсивность изменений в уровнях ряда из периода в период или от даты к дате; 2.определить средние показатели за рассматриваемый период; 3.выявить закономерности изменения явления во времени и в целом за рассматриваемый период; 4.выявить факторы, вызывающие изменение изучаемого явления во времени; 5.прогнозировать развитие явления на будущее. В основе расчета показателей рядов динамики лежит сравнение его уровней. В зависимости от применяемого способа сопоставления показатели динамики могут вычисляться на постоянной и переменной базах сравнения. Для расчета показателей динамики на постоянной базе сравнения каждый уровень ряда сравнивается с одним и тем же базисным уровнем. Исчисляемые при этом показатели называются базисными. Для расчета показателей динамики на переменной базе каждый последующий уровень ряда сравнивается с предыдущем. вычисленные таким образом показатели динамики называются цепными. · Абсолютные показатели динамики Важнейшим статистическим показателем динами является абсолютный прирост, который определяется в разносном сопоставлении двух уровней ряда динамики в единицах измерения исходной информации. Базисный абсолютный прирост исчисляется как разность между сравниваемым уровнем (yi) уровнем, принятым за постоянную базу сравнения (начальным) (уоi): yбi = yi - yoi (9.1.) Цепной абсолютный прирост – разность между сравниваемым уровнем (yi) и уровнем, который ему предшествует (yi-1): yцi = yi –yi-1 (9.2.) Абсолютный прирост может иметь и отрицательный знак, показывающий на сколько уровень изучаемого периода ниже базисного. Между базисными и цепными абсолютными приростами имеется связь: сумма цепных абсолютных приростов равна базисному абсолютному приросту последнего периода ряда динамики. (9.3.) · Относительные показатели динамики Распространенным статистическим показателем динамики является темп роста. Он характеризует отношение двух уровней ряда и может выражаться в виде коэффициента или в процентах. Базисные темпы роста исчисляются делением сравниваемого уровня yi на уровень, принятый за постоянную базу сравнения yoi. Трбi = yi: yoi (9.4.) Цепные темпы роста исчисляются делением сравниваемого уровня yi на предыдущий уровень yi - 1. Трцi = yi: yi-1 (9.5.) Если темп роста больше единицы (или 100%), то это показывает на увеличение изучаемого уровня по сравнению с базисным. Темп роста, равный единице (или 100%), показывает, что уровень изучаемого периода не изменился по сравнению с базисным. Темп роста меньше единицы (или 100%) показывает на уменьшение уровня изучаемого периода по сравнению с базисным. Темп роста всегда имеет положительный знак. Произведение последовательных цепных темпов роста равно базисному темпу роста, а частное от деления последующего базисного темпа роста на предыдущий равно соответствующему цепному темпу роста. Темпы прироста характеризуют абсолютный прирост в относительных величинах. Исчисленный в процентах темп прироста показывает, на сколько процентов изменился сравниваемый уровень с уровнем, принятым за базу сравнения. Базисный темп прироста вычисляется делением сравниваемого базисного абсолютного прироста убi на уровень, принятый за постоянную базу сравнения yоi. Тпбi = убi: yоi (9.6.) Цепной темп прироста – это отношение сравниваемого цепного абсолютного прироста уцi к предыдущему уровню yi-1. Тпцi = y цi: yi-1 (9.7.) Взаимосвязь темпа роста и темпа прироста: Тпi (%) = Трi (%) – 100 (в процентах) (9.8.) Тпi = Трi –1 (в коэффициентах) (9.9.) Темп наращивания характеризует наращивание во времени экономического потенциала и определяется как отношение цепного абсолютного прироста уцi к начальному уровню уоi, выражается в процентах. Может быть как положительным, так и отрицательным. Тнi = уцi: уоi (9.10.) · Средние показатели динамики Средний уровень ряда динамики характеризует типическую величину абсолютных уровней ряда. В интервальных рядах динамики средний уровень определяется делением суммы уровней на их число.
(9.11.) у1, у2, уn - уровни ряда; n - число рядов. В моментном ряду динамики с равностоящими датами времени средний уровень определяется по формуле:
(9.12.) В моментном ряду динамики с неравностоящими датами средний уровень определяется по формуле: (9.13.) yi – уровни ряда динамики, сохранившиеся без изменения в течение промежутка времени ti. Средний абсолютный прирост представляет собой обобщенную характеристику индивидуальных абсолютных приростов ряда динамики и определяется как частное от деления суммы цепных абсолютных приростов на их число.
(9.14) Средний темп роста – обобщающая характеристика индивидуальных темпов роста ряда динамики. (9.15.) Tp1, Тр2, …, Трn- индивидуальные (цепные) темпы роста (в коэффициентах); n - число индивидуальных темпов роста. (9.16.) Средний темп прироста можно определить на основе взаимосвязи между темпами роста и прироста. (9.17.)
Дата добавления: 2014-11-25; Просмотров: 331; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |