КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Измерение тесноты связи
Чтобы измерить тесноту прямолинейной связи между двумя признаками, пользуются парным коэффициентом корреляции, который обозначается r Так как при корреляционной связи имеют дело не с приращением функции в связи с изменением аргумента, а с сопряженной вариацией результативных и факторных признаков, то определение тесноты связи, по существу, сводится к изучению этой сопряженности, т.е. того, в какой мере отклонение от среднего уровня одного признака сопряжено с отклонением другого. Это значит, что при наличии полной прямой связи все значения (х —X) и (у — Y) должны иметь одинаковые знаки, при полной обратной — разные, при частичной связи знаки в преобладающем числе случаев будут совпадать, а при отсутствии связи — совпадать примерно в равном числе случаев. Для оценки существенности коэффициента корреляции пользуются специально разработанной таблицей критических значений г. Коэффициент корреляции rxy. применяется только в тех случаях, когда между явлениями существует прямолинейная связь. (8.16.) Если же связь криволинейная, то пользуются индексом корреляции, который рассчитывается по формуле: где у — первоначальные значения; — среднее значение; Y— теоретические (выравненные) значения переменной величины. Показатель остаточной, случайной дисперсии определяется по формуле: Она характеризует размер отклонений эмпирических значений результативного признака y от теоретических Y, т.е. случайную вариацию. Общая дисперсия характеризует размер отклонений эмпирических значений результативного признака у от , т.е. общую вариацию. Отношение случайной дисперсии к общей характеризует долю случайной вариации в общей вариации, а (8.20.) есть не что иное, как доля факторной вариации (8.21) в общей, потому что по правилу сложения дисперсий общая дисперсия равна сумме факторной и случайной дисперсий: s=sY2+s02 (8.22) Подставим в формулу индекса корреляции соответствующие обозначения случайной, общей и факторной дисперсий и получим:
(8.23) (8.24) однако с той лишь разницей, что вместо групповых средних берутся теоретические значения Y. Индекс корреляции по своему абсолютному значению колеблется в пределах от 0 до 1. При функциональной зависимости случайная вариация å(y-Y)2=0, индекс корреляции равен 1. При отсутствии связи R = 0, потому что Y = у. Коэффициент корреляции является мерой тесноты связи только для линейной формы связи, а индекс корреляции — и для линейной, и для криволинейной. При прямолинейной связи коэффициент корреляции по своей абсолютной величине равен индексу корреляции: (8.25)
Если индекс корреляции возвести в квадрат, то получим коэффициент детерминации (8.26) Он характеризует роль факторной вариации в общей вариации и по построению аналогичен корреляционному отношению η2. Как и корреляционное отношение, коэффициент детерминации R2 может быть исчислен при помощи дисперсионного анализа, так как дисперсионный анализ позволяет расчленить общую дисперсию на факторную и случайную. Однако при дисперсионном анализе для разложения дисперсии пользуются методом группировок, а при корреляционном анализе — корреляционными уравнениями. Коэффициент детерминации является наиболее конкретным показателем, так как он отвечает на вопрос о том, какая доля в общем результате зависит от фактора, положенного в основание группировки. При прямолинейной парной связи факторную дисперсию можно определить без вычисления теоретических значений Y по следующей формуле: (8.27) 5. Множественная корреляция До сих пор мы рассматривали корреляционные связи между двумя признаками: результативным (у) и факторным (х). Например, выпуск продукции зависит не только от размера основного капитала, но и от уровня квалификации рабочих, состояния оборудования, обеспеченности и качества сырья и материалов, организации труда и т.д. В связи с этим возникает необходимость в изучении, измерении связи между результативным признаком, двумя и более факторными. Этим занимается множественная корреляция. Множественная корреляция решает три задачи. Она определяет: 1) форму связи; 2) тесноту связи; 3) влияние отдельных факторов на общий результат. Определение формы связи сводится обычно к отысканию уравнения связи у с факторами x,z,w,...у. Так, линейное уравнение зависимости результативного признака от двух факторных определяется по формуле (8.28) Для определения параметров а0, а} и а2, по способу наименьших квадратов необходимо решить следующую систему трех нормальных уравнений: (8.29.) При определении тесноты связи для множественной зависимости пользуются коэффициентом множественной (совокупной) корреляции, предварительно исчислив коэффициенты парной корреляции. Так, при изучении связи между результативным признаком у и двумя факторными признаками — х и z, нужно предварительно определить тесноту связи между у и х, между у и z, т.е. вычислить коэффициенты парной корреляции, а затем для определения тесноты связи результативного признака от двух факторных исчислить коэффициент множественной корреляции по следующей формуле: (8.30.) где rxy, rzy, rxz — парные коэффициенты корреляции. Коэффициент множественной корреляции колеблется в пределах от 0 до 1. Чем он ближе к 1, тем в большей мере учтены факторы, определяющие конечный результат. Если коэффициент множественной корреляции возвести в квадрат, то получим совокупный коэффициент детерминации, который характеризует долю вариации результативного признака у под воздействием всех изучаемых факторных признаков. Совокупный коэффициент детерминации, как и при парной корреляции, можно исчислить по следующей формуле: (8.31) где — дисперсия факторных признаков, — дисперсия результативного признака. Однако вычисление теоретических значений Y при множественной корреляции и сложно, и громоздко. Поэтому факторную дисперсию исчисляют по следующей формуле: (8.32)
Проверка существенности связи при множественной корреляции, по сути, ничем не отличается от проверки при парной корреляции. Поскольку факторные признаки действуют не изолированно, а во взаимосвязи, то может возникнуть задача определения тесноты связи между результативным признаком и одним из факторных при постоянных значениях прочих факторов. Она решается при помощи частных коэффициентов корреляции. Например, при линейной связи частный коэффициент корреляции между х и у при постоянном z рассчитывается по следующей формуле: (8.33) В настоящее время на практике широкое распространение получил многофакторный корреляционный анализ.
Дата добавления: 2014-11-25; Просмотров: 1062; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |