Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Эту избыточность можно устранить, если перейти к кодированию достаточно большими блоками




Пример20: Рассмотрим процедуру эффективного кодирования по методике Шеннона - Фано сообщений, образованных с помощью алфавита, состоящего всего из двух знаков x1 и x2 с вероятностями появления соответственно Р(х1) = 0,9; P(x2) = 0,1.

Так как вероятности не равны, то последовательность из таких букв будет обладать избыточностью. Однако, при побуквенном кодировании мы никакого эффекта не получим. Действительно, на передачу каждой буквы требуется символ либо 1, либо 0, в то время как энтропия равна

 

,

т.е. оказывается

 

При кодировании блоков, содержащих по две буквы, получим коды:

 

Таблица 3.4.

Блоки Вероятности Кодовые комбинации
номер разбиения
     
x1x1 0,81      
x1x2 0,09      
x2x1 0,09      
x2x2 0,01      

 

Так как знаки статистически не связаны, вероятности блоков определяют как произведение вероятностей составляющих знаков.

Среднее число символов на блок

 

а на букву 1,29/2 = 0,645, т.е. приблизилось к Н = 0,47 и таким образом удалось повысить эффективность кодирования.

Кодирование блоков, содержащих по три знака, дает еще больший эффект:

 

Таблица 3.5.

Блоки Вероятность Pi кодовые комбинации
номер разбиения
         
x1x1x1 0,729          
x2x1x1 0,081          
x1x2x1 0,081          
x1x1x2 0,081          
x2x2x1 0,009          
x2x1x2 0,009          
x1x2x2 0,009          
x2x2x2 0,001          

 

Среднее число символов на блок равно 1,59, а на знак - 0,53, что всего на 12% больше энтропии.

Следует подчеркнуть, что увеличение эффективности кодирования при укрупнении блоков не связано с учетом все более далеких статистических связей, т.к. нами рассматривались алфавиты с независимыми знаками.




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 428; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.