Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Аппараты для биохимического анализа




ЛАБОРАТОРНАЯ ДИАГНОСТИКА

 

 

В современных клинико‑диагностических лабораториях используются разнообразные методики определения биохимических показателей. В зависимости от метода определения, а также от клинической задачи и материальных возможностей лаборатории, выбор может быть остановлен на различных анализаторах и системах.

В повседневной лабораторной практике для определения основных параметров клинической биохимии (ферментов плазмы и сыворотки крови, основных метаболитов – сахаров, азотистых оснований, пигментов, электролитов плазмы крови и др.) чаще всего используют спектрофотометрические способы определения. Среди используемых для этих целей анализаторов можно выделить три основные группы: спектрофотометры, полуавтоматические биохимические анализаторы и полностью автоматизированные аналитические системы.

Спектрофотометры – это устройства, рассчитанные на регистрацию величины оптической плотности и производящие элементарные математические операции с полученными величинами, которые, в свою очередь, подразделяются на одно– и многоканальные системы. Спектрофотометры между собой различаются по наличию (или отсутствию) ряда дополнительных возможностей, таких как термостатирование пробы, автоматический вычет бланка, вывод результатов на дисплей или на печатную ленту, и т. п. Подготовка реагентов, смешивание и внесение образцов, распределение очередности тестов для всех этих анализаторов осуществляются врачом‑лаборантом вручную, поэтому такие методики называют ручными, или мануальными.

Полуавтоматические биохимические анализаторы также требуют участия в своей работе врача‑лаборанта, однако, начиная с момента введения реакционной смеси в анализатор, все последующие стадии автоматизированы. Оператор проводит подготовку проб, смешивание реагентов, однако очередность внесения бланка, калибраторов или стандартов определяет прибор, выдавая оператору запрос на их исследование и на внесение следующей пробы. Расчет результатов в полуавтоматических биохимических анализаторах автоматизирован, результаты подаются на дисплей в заранее запрограммированных оператором единицах. Некоторые системы способны оценивать адекватность полученных результатов по бланку, значению, или изменению оптической плотности в ходе кинетического измерения. В наиболее современных полуавтоматических биохимических анализаторах предусмотрена возможность верификации результатов путем построения карт Леви‑Дже‑нингса и отбраковка недостоверных результатов (или сообщение об их недостоверности). Большинство полуавтоматических биохимических анализаторов имеют встроенный процессор, дисплей, принтер, однако некоторые обладают возможностью подключения к персональному компьютеру или оборудованы записывающим устройством. Вывод результатов осуществляется на дисплей или на принтер.

Полностью автоматизированные биохимические анализаторы осуществляют дозирование реагентов, их смешивание и внесение реакционной смеси в зону анализа автоматически. Участие оператора необходимо только для определения «профиля» (регламента последовательности определения тех или иных параметров), количества анализируемых проб и на стадии программирования тестов.

Практически все автоматические системы оборудованы программным обеспечением, позволяющим оценить достоверность результатов, а при получении недостоверного результата – позволяют повторить анализ с другим разведением пробы. Большинство приборов этого класса подключаются к внешнему персональному компьютеру или имеют встроенный процессор, программное обеспечение в таких анализаторах выполнено в формате операционных систем DOS / Windows.

Общими чертами всех автоматических биохимических анализаторов являются: высокая пропускная способность, невысокий (в сравнении с мануальными методиками и определением на полуавтоматических анализаторах) расход реагента, автоматическая подача и смешивание реагентов.

Основными критериями выбора того или иного анализатора являются его аналитические возможности и математическое обеспечение. Большинство современных биохимических анализаторов способно проводить тесты по конечной точке, регистрацию кинетики фермент‑субстратного взаимодействия, определять некоторые другие параметры по заложенным в него или составляющимся в процессе определения калибровочным кривым (например, иммунотурбидиметрический анализ специфических белков или мониторинг лекарственной терапии и ряда других низкомолекулярных метаболитов). Математическое обеспечение биохимических анализаторов зависит от его класса и версии (так, современные версии большинства известных анализаторов уже содержат программы работы с нелинейными калибровками и верификацию результатов по правилам Вестгарда и построение карт Леви‑Дженингса). Однако почти каждая фирма‑производитель предоставляет и свои, дополнительные, аналитические или программные возможности.

По работе с реагентами полностью автоматизированные анализаторы принято разделять на так называемые «открытые» и «закрытые» системы. Для «закрытых» систем характерно использование ограниченного спектра реагентов, предусмотренного фирмой‑изготовителем прибора. В таких системах значения контрольных и калибровочных материалов запрограммированы заранее, а информация о вносимых реагентах регистрируется путем считывания штрих‑кода с упаковки.

Положительным аспектом такой организации является достаточно высокая стабильность результатов калибрования, однако имеется и существенный недостаток: «закрытые» системы производят обычно крупные фирмы‑изготовители, а затраты на предварительную проверку реагентов, являющуюся залогом столь высокого качества, делают реагенты для закрытых систем достаточно дорогими, тогда как в силу специфики организации закрытых систем вероятность их замены на более экономичные аналоги практически нулевая. «Открытые» системы оборудованы набором светофильтров для проведения наиболее распространенных методик и допускают проведение анализа практически на любых реагентах промышленного производства. Остальные функции: автоматическое дозирование реагентов, подготовка реакционной смеси, внесение пробы, определение ее оптической плотности и верификация полученных результатов с возможностью повторения неудовлетворительных анализов с измененным соотношением реагентов – аналогичны таковым у автоматических «закрытых» систем. Самые современные «открытые» автоматические анализаторы оборудованы сканером штрих‑кодов, что позволяет считывать информацию аналогично тому, как это делают закрытые системы.

Открытые автоматические системы разных фирм‑изготовителей различаются по конструкции основных блоков (блок реагентов, блок анализируемых образцов и калибровочных материалов, реакционный блок, система считывания результатов и др.). Каждая конструкция имеет свои преимущества и недостатки.

Автоматические биохимические анализаторы различаются также по режиму доступа к тому или иному тесту.

1. Система « тест за тестом» – Batch‑доступ, при котором для всех образцов система определяет сначала один параметр, затем следующий и т. п. (подобная система характерна для анализаторов, оборудованных проточной кюветой). Преимуществом является достаточно низкий риск взаимодействия реагентов из наборов для определения различных аналитов, а также быстрый набор статистических данных по определяемому аналиту, что удобно при проведении научных исследований. Серьезным недостатком, особенно для лабораторий, обслуживающих стационары, – невозможность быстрого получения результатов по каждому больному.

2. Система « пациент за пациентом» и/или «тест за тестом» – свободный доступ (Random Access), при котором можно выбрать режим «определение всех параметров для одного образца», или, как и при Batch‑режиме, определить один и тот же параметр во всех образцах. Эта система обладает всеми преимуществами Batch‑системы, лишена ее недостатков, позволяет проводить экстренное определение любого параметра (Stat‑исследования), однако требует грамотного назначения очередности тестов или тщательной специфической промывки (например, растворами кислоты, щелочи или детергентов) между определенными типами анализов. В наиболее современных анализаторах эта проблема решена путем введения списков тестов, запрещенных к последовательной постановке.

В зависимости от конструкции блоков для реагентов, проб и реакционного узла можно выделить два основных типа биохимических анализаторов. Первый тип – это линейный реагентный блок, представляющий собой стрип с гнездами для кювет с реагентами. Чаще всего реагенты хранятся при комнатной температуре, но в ряде современных систем охлаждаются. Серьезным недостатком такой конструкции является необходимость переноса реагентов из промышленных емкостей в специальные кюветы: во‑первых, на этом этапе возможно загрязнение реагентов, во‑вторых – часть реагента всегда остается в кювете (полный забор практически невозможен) и не подлежит возвращению в основную емкость. Другой тип блока реагентов – карусель, в которую помещают реагенты в промышленных флаконах. При такой конструкции забор реагента осуществляется практически полностью, ошибки, загрязнение реагента и его потери на этом этапе исключены. В самых современных моделях реагентная карусель охлаждается до 10–15 °C, что обеспечивает его качественную работу на протяжении всего срока годности.

Конструкция блока проб (образцов) чаще всего аналогична конструкции реагентного блока, с той лишь разницей, что основным преимуществом карусели является не только возможность использования первичных пробирок, но и возможность установки дополнительных калибраторов и/или образцов в процессе работы прибора. Кроме того, в большинстве приборов с каруселью проб не существует жесткой привязки калибраторов к определенным гнездам, а сами пробы хранятся при комнатной температуре, без дополнительного подогрева.

Реакционный узел может представлять собой проточную кювету (об ограничениях, накладываемых такой конструкцией на пользовательские характеристики прибора), или термостати‑руемую платформу с реакционными пробирками или планшетами, которые в свою очередь бывают одноразовые или многоразовые. Использование одноразовых реакционных пробирок в отечественной лабораторной практике является весьма неэкономичным, а на реакцию, протекающую в многоразовых пробирках (планшетах), значительное влияние оказывает качество их промывки (некоторые системы оснащены автоматическими моющими узлами, некоторые требуют внешнего моющего устройства или ручной обработки) и соответствие длительности их использования регламентированному сроку эксплуатации. Любые нарушения на этом этапе могут приводить к нарушению химизма протекающих в блоке процессов и, следовательно, существенно искажать результаты. Поэтому в некоторых современных системах в качестве реакционного блока используется многоразовый реакционный ротор, состоящий из определенного количества кювет из прочного материала и не требующий ручной промывки или дополнительной просушки (все операции осуществляет сам анализатор).

Определенное значение для удобства пользователя и качества получаемых результатов имеют также конструкция охлаждающей системы (при ее наличии), количество дозаторов (желательно наличие независимых дозаторов для проб и реагентов, во избежание загрязнения иглы реагентов белковым материалом из проб больного) и еще целый ряд аспектов, но основное влияние оказывают именно описанные выше параметры.

Экономичность эксплуатации прибора и реагентов повышается по мере уменьшения объемов проб и реагентов, вносимых в кюветы. Для наиболее адекватного использования реагентов немалое значение имеет не только количество потребляемого реагента, но пошаговость его дозирования.

Все реакции имеют свой регламент, обусловленный оптимальным соотношением вступающих в реакцию компонентов, поэтому чем мельче шаг дозирования (как пробы, так и реагента), тем с большей вероятностью можно выдержать точный регламент реакции на малых объемах. Более того, при одинаковой возможной загрузке прибора (например, от 300 мкл реагента на анализ) более экономичной является такая конструкция дозатора, при которой можно установить шаг в 1 мкл, а не в 5 или 10 мкл для реагента, и 0,5–0,7 мкл, а не 1–1,5 мкл для пробы, так как это оставляет пользователю возможность работы с дробными объемами и не вынуждает его увеличивать загрузку реагента, например до 400 мкл, только потому, что невозможно изменить дозирование пробы с 4 на 4,5 мкл.

Таким образом, для оптимального выбора автоматического анализатора необходимо оценивать не только его аналитические возможности и математическое обеспечение, но и конструкцию основных узлов, оказывающую немалое влияние как на риск возникновения системных и случайных ошибок, так и на экономичность расхода реагентов.

Для адекватного выбора анализатора существенное значение имеет не только его производительность и «интеллектуальность», но и соответствие его нуждам конкретной лаборатории и конкретного лечебного учреждения. Во‑первых, необходимо определить предполагаемую загрузку прибора (поток пациентов). Во‑вторых – учесть возможности штатного расписания и квалификацию персонала. В‑третьих – определить, какие именно тесты и в каком количестве предполагается проводить. С этой целью мы предлагаем следующие таблицы выбора (см. табл. 2, 3).

 

Таким образом, полуавтоматический биохимический анализатор может быть оптимально использован при незначительном потоке пациентов или в случае проведения многочисленных анализов одного или нескольких сходных параметров.

Полностью автоматизированная система необходима при потоке более 10 пациентов в день, в особенности – при широком профиле назначаемых тестов, или при проведении тестов, требующих дополнительного обсчета и верификации результатов.

 




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 1990; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.