КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Экспериментальные данные и вероятности событий
В конце темы рассмотрим связь между вероятностями случайных событий и экспериментальными статистическими данными. А сделаем это на примере бросания монеты. Будем последовательно, через запятую писать О или Р в зависимости от того, выпал «орел» или «решка». После п бросаний при неизменных условиях этого испытания, у нас в результате получится какая-то случайная последовательность. Например, такая: О, О, Р, О, Р, Р, О, Р, Р, Р, О, О, Р, О, Р, О, О, Р, Р, О, О, Р... Иными словами, имеется выборка, в которой две варианты О и Р. Для каждого числа п бросаний монеты можно сосчитать частоту каждой из этих вариант. Сделаем соответствующие расчеты для указанной последовательности.
Из таблицы видно, что на 6-м, 8-м, 12-м и 14-м местах частоты обоих вариант равны 0,5. В остальных случаях частоты отличаются от 0,5, но не сильно. На 7-м месте они равны 0,429 и 0,571, а на 13-м месте – 0,538 и 0,462. И с ростом числа бросаний обе частоты все ближе и ближе будут подходить к 0,5. Практическое проведение большого числа экспериментов показывает, что частота выпадения орла при достаточно большом числе бросаний практически неотличима от 0,5. Как уже упоминалось в конце предыдущей темы при п = 24000 эта частота у К. Пирсона получилась равной 0,5005. Итак, при каждом конкретном числе бросаний монеты частота или, как ее называют, эмпирическая частота выпадения герба принимает какое-то конкретное значение. Оно может меняться с изменением числа бросаний. Только вот изменения эти практически незаметны. При достаточно большом числе бросаний частота приближается к некоторому постоянному числу. В данном случае к 0,5. Мы сталкиваемся с замечательным законом природы – статистической устойчивостью. Определение. При большом числе независимых повторений одного и того же опыта в неизменных условиях частота появления определенного случайного события практически совпадает с некоторым постоянным числом. Это явление называют статистической устойчивостью, а такое число называют статистической вероятностью этого события. Такая устойчивость имеет место не только при бросании монеты, но и при вытаскивании карт, выпадении определенного числа очков на игральных кубиках, рождении мальчиков, времени восхода солнца и, вообще, для большинства случайных событий. Явление статистической устойчивости соединяет реально проводимые испытания с теоретическими моделями этих испытаний. Приведем несколько примеров, связанных с литературой. Статистические исследования над большим количеством литературных текстов показали, что частоты появления той или иной буквы (или пробела между словами) стремятся при увеличении объема текста к некоторым определенным константам. Таблицы, в которых собраны буквы того или иного языка и соответствующие константы, называют частотными таблицами языка. Приведем таблицу для букв русского алфавита и пробелов (частоты приведены в процентах).
Это значит, что из 1000 случайно выбранных в тексте букв или пробелов буква «ф» будет, в среднем, встречаться два раза, буква «о» – девяносто раз, пробел – 175 раз и т. д. Более того, выясняется, что у каждого автора есть своя частотная таблица использования букв, слов, специфических литературных оборотов и т. п. По этой частотной таблице можно определить автора примерно так же точно, как и по отпечаткам пальцев. Приведем два примера из нашей недавней истории. До сегодняшнего дня не утихают споры об авторстве «Тихого Дона». Довольно многие считают, что в 23 года М. А. Шолохов такую глубокую и поистине великую книгу написать просто не мог. Выдвигались разные аргументы и разные кандидаты в авторы. Особенно жаркими были споры в момент присуждения М. А. Шолохову Нобелевской премии в области литературы (1965 г.). Статистический анализ романа и сличение его с текстами, в авторстве М. А. Шолохова которых не было сомнений, подтвердил все же гипотезу о М. А. Шолохове, как об истинном авторе «Тихого Дона». Вторая история носит более политический характер. В середине 60-х годов в одной из стран Западной Европы были опубликованы «очерняющие прогрессивный характер социалистической системы» литературные произведения. Автором был А. Терц и, вне всякого сомнения, это был псевдоним. В соответствующих органах был проведен сравнительный анализ опубликованных «вредительских» текстов и результаты были сличены с произведениями ряда возможных кандидатов в авторы. Ответ оказался однозначным: настоящим автором был литературовед Андрей Донатович Синявский. Он, в общем-то, не отпирался и на суде в 1967 году («Процесс Синявского и Даниэля») получил 5 лет тюрьмы и 7 лет ссылки. Вот такая вот теория вероятностей и математическая статистика.
Контрольные вопросы
1 Что такое математическая статистика? Чем она занимается? 2 Какие величины называют случайными? Когда случайную величину называют дискретной, а когда – непрерывной? 3 Что такое закон распределения дискретной случайной величины? Как он может быть задан? 4 Как задаются непрерывные случайные величины? 5 Что называется генеральной совокупностью, выборкой, вариантой, вариационным рядом? 6 Что такое частота варианты, мода, медиана, размах выборки? 7 Дайте определение математического ожидания случайной величины. Как найти математическое ожидание? Перечислите его свойства. 8 Дайте определение дисперсии случайной величины. Как она находится? Перечислите свойства дисперсии. 9 Что называется статистической устойчивостью и статистической вероятностью случайного события?
Тема 7: Элементы математического моделирования Модель – это представление объекта, системы или идеи в некоторой форме, отличной от самой целостности.
Дата добавления: 2014-11-16; Просмотров: 449; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |