Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 2 3 страница




 

Принцип дополнительности Бора (сформулирован в 1927-м году): Получение экспериментальной информации об одних физических величинах, описывающих частицу, неизбежно связано с потерей информации о других величинах, дополнительных к первой.

Eкин ® Епот

v®(x,y,z)

С точки зрения физика-экспериментатора это связано с влиянием макроприбора на микроскопический объект. С точки зрения квантовой механики определить одновременно основные свойства частицы и дополнительные к ним невозможно точно ни на каком приборе, так как частицы обладают корпускулярно-волновым дуализмом.

 

Принцип неопределенности Гейзенберга: увеличение точности определения положения частицы вызывает увеличение ошибки определения ее момента (энергии), если эти определения проводятся одновременно.

 

Принцип причинности (Связан с Лапласовским детерминизмом): Если мы знаем исходное условие (причину), то всегда можем определить следствие.

Квантовая механика основывается на теории вероятностей.

Ψ0®|Ψ|2 – Квадрат функции показывает наибольшую вероятность местоположения данной частицы.

 

Современная концепция атомного ядра.

 

В 1932 году была предложена протонно-нейтронная модель Иваненко-Гейзенберга.

Ядра с одинаковым зарядом и разной массой называются изотопами.

75% 25% природного хлора.

Ядра с одинаковыми массовыми числами, но разными зарядами называются изобарами.

ΔE=Δmc2

В ядро атома и его пространство входит около 350 частиц, которые известны на данный момент.

Øя≈10-15 м.

Все они – маленькие вращающиеся «волчки» и все имеют момент количества движения.

 

Элементарные частицы.

 

Кварк – «непонятный».

У каждой частицы есть античастица. Отличаются они зарядом или магнитным моментом.

В 1928-м году Поль Дирак предсказал античастицы.

β++e-↔2γ+Q

Если взят 1 грамм электронов и позитронов, то выход энергии будет соответствовать взрыву в 10 килотонн тротила.

 

Характеристики микрочастиц: масса, заряд, спин, время жизни.

Время жизни стабильной частицы - τ≥1020 лет. Tполураспада протона=1032 лет.

Протон, электрон и фотон являются среднеживущими – от минут до 10-18 секунды.

Свободный нейтрон – 10-15 минут.

Кроткоживущие – от 10-18 10-24 с (резонансы, или виртуальные частицы).

 

В настоящее время выделено 12 фундаментальных частиц и столько же античастиц, из которых состоит весь мир. Это 6 кварков и 6 лептонов(электрон, мюон, Тау-лептон, νe, νμ, ντ).

 

Модели ядра.

1. Оболочечная

2. Оптическая

3. Капельная

 

1. Ядро как оболочка атома. Нуклоны находятся по оболочкам атомного ядра. Принцип Паули для нуклонов – на одной орбите не может быть двух нуклонов с одним и тем же спином. Эта модель хорошо описывает ядра легких атомов.

2. Оптическая модель подходит для описания средних и тяжелых ядер. На ядро налетают частицы, обладающие корпускулярно-волновым дуализмом, и, если длины волн равны, наблюдаются дифракция и интерференция.

3. Подходит для описания тяжелых ядер. Хорошо описывает естественную радиоактивность. Все элементы, начиная с висмута, радиоактивны. Сравнение с каплями жидкости: Плотность жидкости при одной температуре и давлении постоянна и не зависит от числа молекул. То же самое, плотность ядерного вещества постоянна и не зависит от числа нуклонов в ядре. Нуклон, находящиеся на границе ядра, испытывают силы, втягивающие их внутрь ядра, следовательно, равнодействующая сил на границе не равно нулю. Отличие: Нуклоны обладают волновыми свойствами и имеют заряд.

 

 

Фундаментальные взаимодействия.

Естествознание объясняет огромное разнообразие природных систем взаимодействием материальных объектов, то есть, воздействием их друг на друга. Взаимодействие – это основная причина, определяющая движение в природе, поэтому взаимодействие, как и движение, носит универсальный характер. Причинами взаимодействия учёные считают существование в природе массы и различных зарядов.

В классической механике Ньютона взаимодействие определяется силой, с которой одно тело действует на другое, и при этом, по концепции дальнодействия, считается, что все действия тел друг на друга передаются через пустое пространство на любое расстояние мгновенно, так как скорость света в классической механике принята за бесконечность.

В теории относительности представления о мгновенном взаимодействии не соответствуют действительности. Никакое действие, никакая информация, никакие передвижения тел в пространстве не могут происходить со скоростью, превышающей скорость света (концепция близкодействия). Взаимодействия передаются посредством физических полей и с конечной скоростью.

Квантовая теорию дополнила концепцию близкодействия тем, что она показала, что при любом взаимодействии происходит обмен особыми частицами (переносчиками взаимодействия, или квантами соответствующего поля).

Основные характеристики взаимодействия – это энергия и импульс.

Существует четыре основных взаимодействия:

1. Гравитационное

2. Электромагнитное

3. Слабое

4. Сильное

 

1. Гравитационное взаимодействие, или тяготение, проявляется в притяжении любых материальных объектов, имеющих массу. Оно действует на любых расстояниях между объектами, поэтому считается, что радиус гравитационного взаимодействия равен бесконечности, но оно слабее всех других взаимодействий. Оно подчиняется закону всемирного тяготения Ньютона.

Это взаимодействие является доминирующим в мегамире, так как звезды и галактики имеют очень большие массы. В современном понятии существует поле тяготения с гравитационными волнами, скорость распространения которых приблизительно равна скорости распространения света в вакууме. Переносчиками тяготения являются гравитоны, которые пока не открыты и не будут открыты, пока в нашем распоряжении не будет весов с точностью не менее 10-11 г, так как все гравитационное взаимодействие связано с массами. Гравитоны малы по массе, а само гравитационное взаимодействие слабое.

2. Электромагнитное взаимодействие обусловлено существование в природе электрических зарядов. Из-за этого взаимодействия существуют атомы и молекулы (притяжение электронов и протонов, химические связи), силы трения, упругости, поверхностного натяжения жидкости и т.д. Они действуют на любом расстоянии, но они во много раз сильнее гравитационных сил. Переносчиками являются фотоны, имеющие нулевую массу покоя и приобретающие ее при движении со скоростью света. Они фиксируются приборами, как и электромагнитные волны, причем, различаются длиной волны и частотой.

Использование электромагнитных волн в жизни человека: Электромагнитные волны являются фундаментом современной техники (электродвигатели, генераторы, нагреватели, микроволновые приборы, свет, телефон, телеграф, телевидение, лазеры, компьютеры, телескопы, микроскопы, все носители информации).

3. Сильное взаимодействие обеспечивает существование нуклонов и вообще существование атомных ядер, поэтому расстояние, на котором они проявляются, очень мало – не более 10-15 м. Переносчиком взаимодействие (склеивание кварков в нуклоны) являются глюоны, которые были открыты с появлением ускорителей. Это взаимодействие связано с ядерными силами. Сильные взаимодействия являются самыми сильными среди всех фундаментальных взаимодействий. Благодаря им ядро атома чрезвычайно устойчиво.

4. Слабое взаимодействие проявляется в процесса распада нестабильных атомных ядер (в основном – в β-распадах). Переносчиками этого взаимодействия являются вионы, обнаруженные в 1983 году. Вионы имеют массу в 100 раз больше протона и нейтрона, а радиус действия этих сил составляет примерно 10-18 м. Действуют они в центре атомного ядра. Благодаря этому взаимодействию возможны термоядерные реакции и образование атомных ядер в недрах звезд (звездный нуклеосинтез). Взаимопревращение нейтронов и протонов, переход между кварками в нуклонах.

 

Характеристики фундаментальных взаимодействий.

Вид взаимодействия Относительная энергия взаимодействия Радиус действия Переносчики взаимодействия
1. Сильное   10-15 м Глюоны
2. Электромагнитное 10-2 Фотоны
3. Слабое 10-5 10-18 м Вионы
4. Гравитационное 10-39 Гравитоны

Одна из важнейших задач современной фундаментальной физики – создание единой теории всех фундаментальных взаимодействий, единой теории поля. Первая попытка создания такой теории была предпринята Теодором Колуци. Он написал письмо Эйнштейну о том, что можно в его расчетах представить не четырехмерное, а пятимерное пространство и таким образом объединить тяготение и электромагнитное взаимодействие. Сильное и слабое взаимодействие в то время еще не были известны. Но он не смог представить точных расчетов, поэтому Эйнштейн отнесся с его письму скептически. В 1970-е гг. появилась Теория Великого Объединения (ТВО), или Теория Супергравитации. В конце 60-х гг. Людвиг Бартини, советский авиаконструктор сказал, что все фундаментальные взаимодействия можно объединить при наличии шестимерного измерения. В начале 80-х гг. предложили 11 измерений, а после фундаментальные разработки включали 26 измерений. Четыре основных измерения – Эйнштейна, остальные были названы квантовыми измерениями. Попытки эти обусловлены тем, что в трех измерениях объединить все фундаментальные взаимодействия невозможно. В конце 80-х гг. российские ученые разработали теорию объединения электромагнитного и слабого взаимодействия. Электрослабое взаимодействие (электромагнитное + слабое) наблюдается в ускорителях при E=100 ГэВ и Т=1012К. Электрослабое взаимодействие проявляется при взаимодействии протонов в ускорителе при данных энергиях. В природе такие энергии возможны при сверхплотных состояниях вещества (чёрные дыры и взрывные расширения при взрывах ядер галактик). Теоретики предсказывают, что объединение электромагнитного, слабого и сильного взаимодействий будет наблюдаться при энергии Е=1015 эВ, а объединение электромагнитного, слабого, сильного и гравитационного при Е=1019 эВ. Таких энергий пока не было зафиксировано нигде во Вселенной.

В момент Большого Взрыва во вселенной было одно фундаментальное взаимодействие, а четыре появилось при расширении и охлаждении вселенной. Суперсила - объединение всех четырех взаимодействий. Овладев суперсилой, мы сможем менять структуру пространства и времени. Идёт речь о перемещении в пространстве на расстояния, сравнимые с расстояниями между галактиками.

 

Концепция молекулярно-кинетического взаимодействия (макромир).

Макромир описывают 3 концепции:

1. Механическое движение системы описывается классической механикой Ньютона.

2. Внутреннее строение системы и её свойства описывает МКТ.

3. Процессы превращения энергии в системе описываются классической термодинамикой.

 

Основные положения молекулярно-кинетической концепции.

1. Атомы и молекулы находятся в непрерывном хаотическом тепловом движении. Интенсивность движения зависит от температуры, поэтому температура – хаотичности системы.

2. Между частицами существуют силы взаимодействия – притяжения и отталкивания. Природа этих сил – электромагнетизм.

3. В отличие от механического движения, нагревание и охлаждение систем может привести к изменению их физических свойств (фазовые переходы – жидкость, газ, твердое тело и т.п.). Фаза – это часть системы, имеющая границу и сохраняющаяся внутри основного физического свойства системы (Давлении, температуре, объеме).

Все эти положения экспериментально доказаны. Подтверждаются явлениями диффузии, броуновского движения и т.д. Количественное подтверждение этой концепции – газовые законы для идеальных газов.

 

Идеальный газ.

1. Расстояние между молекулами во много раз превышает размеры самих молекул, причем, размеры молекул применяются за материальную точку.

2. Между молекулами нет сил межмолекулярного взаимодействия.

 

Идеального газа не существует, но можно приблизиться к идеальному газу – при низком давлении и высокой температуре молекулы движутся, практически не задевая друг друга. Вещество звезд, находящихся на главной последовательности диаграммы Герцшпрунга-Рессела, на определенной глубине находится в состоянии, очень близком к идеальному газу, несмотря на высокую плотность (не стоит забывать об отсутствии «прикрепленных» к ядрам электронов). (Прим. авт. консп.)

Основное уравнение молекулярно-кинетической теории для идеального газа:

k – постоянная Больцмана.

Этот закон записан для одного моля газа.

- для n-ного количества молей. Если газ одноатомный.

Данный атом имеет три степени свободы (3 координаты, так как вращение вокруг собственной оси не учитывается. i=3

Если газ двухатомный, то i=5 (поступательное).

Если газ многоатомный, но молекула линейная, то степеней свободы будет 5, если многоатомный, но нелинейный, то 6. Все степени свободны являются равноправными и вносят одинаковый вклад в среднюю кинетическую энергию.

 

 

Основные газовые законы для идеальных газов.

 

В XVII веке был сформулирован закон Бойля-Мариотта, выражающий зависимость давления(P) от объема (V) при постоянной температуре (Т). (Изотермический).

PV=const

XVIII век, Шарль, закон для изохорного процесса, V=const.

 

XIX век, Гей-Люссак, изобарный процесс, P=const.

На практике же чаще всего все три параметра меняются одновременно.

 

Клапейрон вывел следующий закон:

Менделеев показал, что константой в данном случае будет универсальная газовая постоянная R=8,31

Обобщение из этого для одного моля газа приводит к уравнению:

PV=RT

PV=nRT

- закон, известный как уравнение Менделеева-Клапейрона.

Физический смысл универсальной газовой постоянной: R равна работе, которую совершает один моль газа при нагревании на 1 К при постоянном давлении.

Для реального газа действует уравнение Вандер-Ваальса (XIX век).

- учитывает силы взаимодействия между молекулами реальных газов, что приводит к усилению давления – к внешнему давлению газа присоединяется внутреннее давление между молекулами.

b – учитывает собственный объём молекул.

a и b можно определить только экспериментально.

 

Межмолекулярное взаимодействие электрически нейтральных молекул любого агрегатного состояния.

Точно так же выглядит график зависимости потенциальной энергии взаимодействия от расстояния между молекулами.

При приближении молекулы действуют две силы – притяжения и отталкивания.

r=r0 Fприт=Fотт
r>r0 Fприт>Fотт
r<r0 Fприт<Fотт

 

Если Eкин движ>>Епотенц взаимод, то это газообразное состояние вещества.

Если Eкин движ<<Епотенц взаимод, то это твердое состояние вещества.

Если Eкин движ≈Епотенц взаимод, то это жидкое состояние вещества.

 

Существуют четыре агрегатных состояния вещества. При переходы из одного состояния в другое могут наблюдаться фазовые переходы двух видов.

· Фазовые переходы первого (I) рода – когда в узком интервале температур скачком изменяется давление, плотность или объем.

· Фазовый переход второго (II) рода – это изменение порядка расположения атомов и молекул в кристаллических решетках. При таком переходе резко изменяется плотность. Например, превращение белого олова в серое при -14°С, и кристаллическая решетка из тетраэдров становится кубами.

 

Четвертое состояние вещества – плазма. Плазма – это ионизированный квазинейтральный газ, занимающий настолько большой объем, что в нем не происходит сколько-нибудь заметного нарушения нейтральности

Атом делится на электроны и положительные ионы. В зависимости от степени Ионизации газа различают:

1. Слабо ионизированную (низкотемпературную) плазму, α составляет доли процента, температура 1000-2000°С.

2. Умеренно ионизированную, α состоавляет несколько процентов, температура 5000-7000°С.

3. Сильно ионизированную (высокотемпературную), α=100%, температура 10000°С и выше.

 

Ионосфера представляет собой слабо ионизированную плазму. От нее отражаются радиоволны. В космическом пространстве плазма – это наиболее распространенное состояние вещества (все звезды, в которых идут термоядерные реакции, а таких большинство). В лабораторных условиях плазма образуется в различных формах газовых разрядов.

 

Основное применение молекулярно-кинетической теории:

1. Для разработки криогенной и вакуумной техники.

2. В космонавтике.

3. Исследование сверхпроводимости металлов.

4. Исследование нейтронных полей в ускорителях и ядерных реакторах (термоядерный синтез).

 

Основные законы классической (равновесной термодинамики).

Законы показывают переходы теплоты в работу. Изобретение паровых машин подтолкнуло развитие термодинамики. В 1848 году Джоуль впервые рассчитал эквивалент теплоты и работы 1 кал=4,187 Дж.

Термодинамическая система – это система, состоящая из большого числа частиц, взаимодействующих между собой. Термодинамические системы могут быть:

· Изолированными (замкнутыми) – это те системы, которые не сообщаются с окружающей средой ни работой, ни теплом, ни веществом, ни информацией. Другое название – равновесные.

· Открытые – сообщающиеся с окружающей средой. Открытые системы не изучаются классической термодинамикой.

 

Для замкнутых систем можно было применить наиболее простые расчётные уравнения, которые в некотором приближении подходили к описанию работы двигателей и тепловых машин. Параметры термодинамической системы: объем(V), работа(A), давление(P), температура(T), теплота(Q), внутренняя энергия тела(U).

Т является производной от энергии. Запас энергии всегда положителен, так как нельзя прекратить тепловое движение молекул, даже при Т=0 К остаются колебательные и вращательные движения.

Q – одна из форм энергии, определенное количество энергии, получаемое или передаваемое системой.

А определяется силой действия на систему. А=F·S, A=PΔV.

U включает в себя запас энергии атомов, молекул, электронов…

U=Uпоступ движ молек+Uядер+Ue+…

Без учёта Ек и Еп системы в целом!

Классическая термодинамика описывается тремя законами:

  1. Закон сохранения и превращения энергии.

Q=ΔU+A, где ΔU – изменение внутренней энергии.

Количество теплоты, сообщенное телу, идет на увеличение его внутренней энергии и совершение телом работы.

Q=ΔU+PΔV.

  1. Невозможно получить работу без затрат энергии, то есть, невозможен вечный двигатель первого рода. Универсальный закон природы, справедливый для живых и неживых объектов.

 

1 кг жира ® 38,9 кДж

1 кг углеводов ® 17,5 кДж

1 кг белков ® 17,5 кДж

Применение первого закона к изопроцессам.

  1. Изохорный, V=const. A=0, Q= ΔU
  2. Изобарный, P=const. Q=ΔU+PΔV
  3. Изотермический, T=const. ΔU=0, Q=A.
  4. Адиабатный (протекающие без теплообмена), чаще всего – это быстротекущие процессы. Q=const. A=-ΔU

 

 

Теплоёмкость - это количество теплоты, сообщенное телу и изменяющее при этом температуру тела на 1°С. Второй закон термодинамики рассматривает возможность и направление наблюдаемого процесса. Все самопроизвольные процессы идут в направлении выравнивания системы, и они всегда приводят к состоянию равновесия. Несамопроизвольный процесс идет только при воздействии извне.

Это реальный необратимый процесс.

 

Обратимый процесс – это когда при его завершении (возврате в исходное состояние) система самопроизвольно возвращается к этому состоянию без каких-либо потерь. Это гипотетический цикл. К обратимому циклу можно приблизиться, если сделать процесс бесконечно медленным. Все обратимые процессы равновесны. На основании обратимого цикла С. Карно в 1827 году разработал так называемый цикл Карно – цикл работающей тепловой машины. Рабочее тело в цикле Карно – идеальный газ, и при работе такого цикла в машине нет потерь на трение, лучеиспускание и т.п. Тепловая машина, или тепловой двигатель, - это такое устройство, которое превращает внутреннюю энергию топлива в механическую.

Рабочее тело (газ, пар) при расширении совершает работу, при этом получает от нагревателя теплоту Q1. Далее сжимается, при сжатии рабочее тело передаёт холодильнику теплоту Q2. (Q1<Q2, T2<T1).

1-2 – изотермическое расширение газа с температурой T1. При этом газ получает от нагревателя Q1.

2-3 – дальнейшее расширение идеального газа с понижением температуры (адиабатное расширение).

В первых двух процессах совершается работа А.

3-4 – изотермическое сжатие.

4-1 – адиабатное сжатие газа с повышением температуры с T2 до Т1.

Цикл Карно – это обратимый процесс, идущий бесконечно медленно. По циклу Карно считают максимальный КПД (Коэффициент Полезного Действия).

Q1-Q2=Amax

- означает, что КПД идеальной машины зависит только от температуры нагревателя и холодильника.

hобратим>hнеобратимого (самопроизв)

 

Формулировки второго закона.

Вся теплота никогда не может перейти в работу, часть ее обязательно теряется и передается холодильнику, потому что нельзя полностью исчерпать энергию теплового движения молекул. Можно работу превратить в теплоту. Нельзя создать вечный двигатель второго рода, то есть, нельзя создать такую тепловую машину, которая превращала бы всю теплоту в работу. Обязательно КПД<100%.

Второй закон термодинамики носит статистический, то есть, вероятностный характер, так как он выписан только для системы из большого числа молекул.

Энтропия – это количественная мера той теплоты, которая не переходит в работу.

S2-S1=ΔS=

Если процесс обратимый, то

Энтропия (S) в реальном процессе – затраты на холодильник, лучеиспускание, трение. При обратимом изолированном цикле нет изменения энтропии, она постоянна. В необратимых процессах энтропия возрастает до тех пор, пока система не придет в равновесие, и при этом энтропия будет максимальна. Работа прекращается в состоянии равновесия, A=0. Отсюда Клаудиус вывел возможность тепловой смерти вселенной, так как идёт процесс накопления (повышения) энтропии, и все процессы остановятся, но его (возможно) ошибка была в том, что он исходил из того, что вселенная – замкнутая система.

Энтропия определяет возможность, направление и предел самопроизвольных процессов в замкнутых системах. Энтропия – это количественная мера хаоса в системе.

Больцман:

d=khW – показывает меру беспорядка, или хаоса.

W - Термодинамическая вероятность системы – это число микросостояний, соответствующих данному макросостоянию системы: число способов реализации данного макросостояния.

Если W=1, то S=0 – только идеальный кристалл при Т=0.

Энтропия идеального кристалла при Т=0 равна нулю. Если в кристалле есть хотя бы один дефект, то W=2, и S>0. Sгаза>Sжидк>Sтв.тела

 

Концепции эволюции реальных систем.

Классическая термодинамика занималась только консервативными (изолированными) системами. В таких системах при самопроизвольных процессах энтропия увеличивается до тех пор, пока не достигнет максимального значения в состоянии равновесия.

Неравновесная термодинамика, сформированная в середине XX века учеными: Пригожин и Хакен. Аппарат классической термодинамики – линейные уравнения, дающие всего одно решение. Аппарат неравновесной термодинамики – это нелинейные уравнения, которые дают несколько альтернативных решений, потому что неравновесная термодинамика описывает реальные процессы в природе, живых организмах, социальном обществе. Открытые системы стремятся к большей организованности, так как энтропия у них не увеличивается. Чем больше информации поступает в систему, тем система более организована, и тем меньше её энтропия. (Шеннон)

Информация – это мера организованности системы. Фотокатод ЭЛТ (Электронно-Лучевой Трубки) телевизора содержит примерно 106 микрофотоэлементов – это число микросостояний. Белый шум – помехи на экране при отсутствии сигнала из телецентра – это увеличение хаотического теплового движения элементов, и энтропия максимальна, это состояние хаоса. При поступлении сигнала (информации) энтропия резко уменьшается, а информация увеличивается.

Кибернетика (Роберт Винер) – связана с управлением открытыми системами, но только теми, у которых есть обратная связь. Положительная обратная связь – поведение системы усиливает внешние воздействия (например, лавина). Отрицательная связь – это поведение системы, при котором внешние воздействия ослабляются. Такая связь стабилизирует процессы в системе (холодильник, термостат и все современные информационные устройства). Гомеостатическая связь – когда внешнее воздействие сводится системой к нулю (Гомеостаз – поддержание постоянной температуры тела).




Поделиться с друзьями:


Дата добавления: 2014-11-16; Просмотров: 344; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.253 сек.