Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 2 4 страница




Роберт Винер в 50-60-х гг. определил кибернетику как науку об управлении связей в машинах и биологических системах. Поведение открытых систем с обратной связью описывается как организованное целенаправленное поведение, которое приводит к уменьшению энтропии. К 60-м годам выяснилось, что для реальных систем мало учитывать эффективное управление системой, а нужно учитывать самоорганизацию системы, то есть, необходимо было найти связь между эффективным управлением системой и спецификой развития реальной системы.

В основном рассматриваются биологические и социальные системы. Теорию самоорганизации разработали на основе неравновесной термодинамики Пригожин и Хакен. Самоорганизация – это коллективное взаимодействие частиц в открытой системе, которое в дальнейшем может привести к возникновению нового порядка в расположении этих частиц в системе. Самоорганизация наблюдается в открытых реальных системах с большим коллективом частиц (эволюция вселенной, деление клеток, функционирование мозга, образование речи и языков, формирование общественного мнения, естественный отбор). Система является самоорганизующейся, если:

  1. Это большой коллектив частиц.
  2. Система является открытой.
  3. Она находится далеко от точки равновесия, следовательно, энтропия системы не является максимальной.

 

Синергетика – наука, изучающая самоорганизующиеся системы (Пригожин, Хакен). Объект изучения – открытые реальные системы. Она изучает механизм образования, развития и разрушения самоорганизующихся систем. Этот механизм связан с коллективными явлениями, которые способствуют развитию системы. В системе устанавливается новый порядок.

Такой порядок самоорганизации наблюдается у всех открытых самоорганизующихся систем. Новый порядок связан с появлением и накоплением флуктуаций в системе. В дальнейшем они нарастают и способствуют появлению хаоса в системе. Флуктуации ведут к возрастанию энтропии. Новый порядок всегда восстанавливается через хаос. Флуктуации расшатывают систему, она становится неустойчивой, и любое незначительное воздействие толкнет ее к саморазрушению, а дальше – к выбору пути. Любая революция есть выбор пути социальной системы. Система приходит к так называемой точки бифуркации (выбора), где существует несколько альтернатив дальнейшего развития.

Бифуркация – выбор системой дальнейшего пути развития из нескольких альтернативных решений. Такой выбор может пойти и в сторону хаоса и в сторону организации. После выбора нового порядка система приходит в устойчивое состояние, которое называется аттрактор.

Классическая равновесная термодинамика даёт обратимость во времени, даёт единственный путь развития замкнутой системы: система приходит в равновесие. Неравновесная термодинамика даёт несколько нелинейных уравнений, которые приводят к нескольким решениям. В неравновесной термодинамике случайность и вероятность становятся объективными свойствами системы.

Синергетика даёт новый образ развития мира: мир открытый, он развивается по нелинейным законам, поэтому в таких системах могут быть самые неожиданные, непредсказуемые повороты системы, связанные с дальнейшим выбором ее развития.

Вселенная является самоорганизующейся системой и развивается по законам синергетики:

  1. Она – сложная система, состоящая из большого коллектива частиц.
  2. Все время происходит эволюция системы, то есть, в ней образуются и распадаются крупномасштабные структуры. Это говорит о том, что вселенная находится далеко от равновесия.

Концепции космологии.

Космология – это наука о свойствах и эволюции вселенной.

Вселенная – это совокупность всех форм материи и наблюдаемых явлений.

Метагалактика – это часть Вселенной, которая доступна нашим наблюдениям. Расширение границ идёт за счет усовершенствования приборов. Сужающая часть – это время прихода света от отдалённых частей.

Галактика (Туманность) – это скопление звезд и планет. Есть гигантские галактики, включающие 1013-1015 звезд.

Поведение и свойства объектов вселенной описывается одинаковыми и не изменяющимися во времени физическими законами:

  1. Закон сохранения энергии (ЗСЭ).
  2. Закон всемирного тяготения.
  3. Закон сохранения импульса, закон сохранения момента импульса.

 

А. Фридман (1868-1925) разработал модели на основании теории Эйнштейна, который считал, что вселенная стационарна во времени, предположил, что вселенная может или расширяться (в Римановском пространстве), или сужаться (сжиматься), или пульсировать. Он сам склонялся к модели расширения. В 1917 году Слайфер обнаружил красное смещение спектра, установив спектрограф на телескоп. Еще в середине XIX века Доплер обосновал смещение спектра в длинноволновые области при удалении от объекта. В 1929 году Э. Хаббл заинтересовался красным смещением Слайфера и обнаружил, что все объекты удаляются.

Закон Хаббла: Красное смещение спектральных линий галактик в сторону длинных волн тем больше, чем дальше от нас находятся галактики.

V=HR, где V – скорость галактики, H – постоянная Хаббла, R – расстояние до галактики. H= , лежит в пределах от 50 до 100, обычно около 75.

1 Пк (парсек) = 3,26 светового года=3,08·1016 м.

H= , где τ – время жизни Вселенной. τ=13 млрд. лет.

На основании этой модели Гамов в 30-40-ее гг. разработал теорию Большого Взрыва на основании теории Хаббла. Должен быть эпицентр, или момент взрыва. Это случилось 13-15 млрд. лет назад. Вселенная находилась в сверхплотном и сверхгорячем состоянии:

ρ=1019 г/см3

Т=1032 К.

По этой модели выделены четыре эры развития вселенной:

  1. Адронная (τ=10-4 с)
  2. Лептонная (τ=0,2 с)
  3. Фотонная (τ=1 млн. лет)
  4. Звездная (пока не закончилась)

 

  1. Эта эра образования тяжелых частиц (барионов, или адронов) из кварков. Вселенная состояла из барионов и антибарионов, происходили реакции аннигиляции. Потом стали распадаться на нейтроны и протоны (их больше). Эти протоны существуют до сих пор, положительный барионный заряд – тоже.

  1. Лептонная – эра лёгких частиц (электронов, фотонов, позитронов).

 

Реликтовое нейтрино (ν) образовали в эту эру, но обнаружить их пока не удалось. В конце лептонной эры протонов и нейтронов стало примерно одинаковое количество.

  1. Фотонная эра, или эра излучения.

Энергия фотонов уменьшается по сравнению с первыми двумя эрами, длина волны увеличиваются, и они переходят в рентгеновское и ультрафиолетовое излучение. В фотонную эру вещество отделяется от антивещества, и фотоны отделились от вещества в виде различных электромагнитных излучений (ЭМИ) – рентгеновского, ультрафиолетового (УФ), светового, инфракрасного… Вселенная становится прозрачной для излучения, появляется свет. В этой же эре произошел первичный нуклеосинтез. Начинают образовываться ядра:

Реликтовое фотонное излучение, которое отделилось от вещества, было обнаружено в 1964-м году Вильсоном и??????????. Температура этого излучения равна средней температуре космоса 2,7К, длина волны составляет порядка 1 мм. Сильное фотонное излучение, которое до сих пор находится в космосе. К концу фотонной эры гамма-фотонов стало в 1 млрд. раз больше, чем протонов и нейтронов вместе взятых. До сих пор сохраняется это соотношение. Называется безразмерной энтропией:

  1. Звездная эра начинается после фотонной с появлением атомов H и He.

 

Водородно-гелиевая вселенная, однородная и изотропная. Атомов водорода образовалось в 3 раза больше, чем атомов гелия. Так было 500 тысяч лет. Вселенная, как самоорганизующаяся система, начала расслаиваться, образуя флуктуации плотности вещества, которое начало закручиваться под действием гравитационных сил. Ньютон утверждал, что из-за гравитации могли быть изменения, приводящие к образованию звезд, галактик и т.п. В 1992 году Зельдович расширил теорию гравитационной неустойчивости (образование «блинов», продолжение сжатия). Модель Гамова удачно описывает многие явления во вселенной, например, эксперименты Хаббла, открытие фотонного реликтового излучения. Однако же, она не в состоянии объяснить:

  1. Скручивание галактик, «блинов». В частности, однообразное крупномасштабное закручивание.
  2. Образование вихрей во вселенной, которые двигаются со скоростью 100-300 км/с.

 

Теория газодинамического образования вихрей (Ударная волна, образованная при столкновении «блинов», закручивание галактик в одну сторону).

В конце XX века была обнаружена ячеистая структура вселенной. По границам ячеек распространено вещество, а в середине – пустота (???) или так называемая скрытая масса. Предположительный объем одной ячейки -1 миллион кубических парсеков. Поэтому в настоящее время вселенную считают однородной и изотропной по распространению в ней вещества. Модель Гамова не может объяснить такую Изотропность вещества вселенной.

Сейчас разработана новая теория – теория инфляции, или теория раздувания вселенной. Гут (80-е гг.). Основывается на последних достижениях по экспериментам с элементарными частицами. Все произошло из ничего, из физического вакуума, в котором не было вещества, но была огромная энергия. Ячейка физического вакуума, не сдерживаемая гравитацией из-за отсутствия вещества, за 10-35 секунды раздувается до размеров метагалактики, после чего через 10-31 секунды энергия переходит в вещество. Это и было изначальной точкой, из которой образовалась вселенная, с ρ=1042 г/см3 и Т=1028 К.

Самое фундаментальное, что нам дала эта теория – это то, что вещество вышло из вакуума и рано или поздно исчезнет снова в этом вакууме. Исходя из этой теории, следует, что модель пульсирующей вселенной Фридмана возможна, но только при условии распада протонов. По теории инфляции в точке образования вещества соединяются все четыре фундаментальных взаимодействия (Теория Великого Объединения, Суперсила).

 

По современным представлениям расширяющаяся вселенная состоит из:

  1. Светящееся вещество (галактики, звезды, планеты, межзвездный газ [пыль из атомов водорода, гелия и примесей других элементов]) – барионная форма существования материи.
  2. Реликтовое излучение (фотоны).
  3. Темная (скрытая) материя – вещество, пока неизвестное учёным, этой массы в несколько раз больше.

 

Модель Хойла (50-е гг.) – взаимопревращение вещества и антивещества, модель стационарной вселенной.

Модель Зельдовича (1992) – модель «холодной» вселенной.

Модель Альфена (90-е гг.) – считает, что роль играет не только гравитационное, но и электромагнитное излучение. Вся вселенная пронизана плазмой. Экспериментально установлено, что электромагнитные силы участвуют в образовании квазаров. Реликтовое излучение – микроволновой фон, окружающий плазму.

 

Галактики – изучение на компьютерном практикуме.

 

Звёзды. Основные звездные характеристики.

 

  1. Возраст (от сотен тысяч до 13-15 миллиардов лет).
  2. Светимость
  3. Температура
  4. Масса
  5. Химический состав

 

Светимость – полное количество энергии, излучаемой звездой за 1 секунду. Lc=4·1026 Вт.

Абсолютная звездная светимость – это светимость звезды при отнесении ее на расстояние 10 Пк.

Видимая звездная величина – величина, характеризующая звезду с точки зрения визуального наблюдения. Чем ярче звезда, тем более отрицательна её величина.

Наше Солнце: -26,72

Альфа Центавра +0,3

Температура поверхности влияет на цвет звезды, то есть, связана со спектром. Классы звезд по температуре (цвету):

O B A F G K M

Варианты мнемонического запоминания:

Один Бритый Англичанин Финики Жевал Как Морковку

Oh, Be A Fine Girl, Kiss Me!

Самые горячие звезды – белые и голубые, самые холодные – красные.

 

Зависимость между абсолютной светимостью звезды и ее температурой (классом) отражает диаграмма Герцшпрунга-Рессела.

 

Главная звездная последовательность показывает связь температуры и светимости. Звезды рождаются из газопылевой туманности, состоящей из гелия и водорода. При закручивании туманности образуются участки, которые разделяются на фрагменты. Звезда не рождается одна. Чаще всего в одном месте туманности рождаются сразу несколько протозвезд. При отделение каждого фрагмента освобождается энергия в виде инфракрасного излучения. В 1957 году было обнаружено скопление источников инфракрасного излучения в туманности Ориона, то есть, там идет образование звёзд. Дальнейшее сжатие протозвезд под действием гравитационных сил повышает температуру звезд, и освободившаяся энергия излучается в виде красного (иногда почти коричневого – прим. авт. консп.) света, образуются красные гиганты. При дальнейшем сжатии звезд температура повышается настолько, то звезда «зажигается», то есть, начинаются реакции термоядерного синтеза.

Звезда «садится» на главную последовательность, там находятся все живые звезды (то есть, звезды, в которых идут термоядерные реакции). Когда кончаются запасы водорода, звезда начинает стареть, и процесс старения связан с массой звезды. Если масса звезды меньше или равна 1,2 массы Солнца, то образуется гелиевое ядро, на поверхности которого в тонком слое еще горит оставшийся водород. Само ядро начинает сжиматься под действием гравитационных сил, температура повышается, и образуется плотное горячее ядро из гелия. В этих условиях из гелия не образуется более тяжелых элементов. Внешняя оболочка постепенно расширяется, и образуется так называемая планетарная туманность. Оболочка горит красным светом, звезда становится красным гигантом. Белый карлик (ядро) горит еще несколько миллионов лет, после чего превращается в чёрного карлика. Такова судьба Солнца.

Судьба более массивных звезд, масса которых превышает 1,2 массы Солнца, значительно более «трагична». Такие звезды живут несколько сотен миллионов лет. Если масса звезды составляет примерно 2,5-3 массы Солнца, то после прекращения термоядерных реакций в ядре звезды гравитационные силы начинают очень быстро сжимать ядро звезды. В ядре крайне быстро, скачком, образуется железо, а давление повышается настолько, что электроны «вдавливаются» в ядра атомов, в результате чего образуется нейтронная железная звезда. Происходит взрыв, разлетается остаточное вещество, такой процесс называется взрывом сверхновой. В 1054 году астрономы зарегистрировали взрыв сверхновой. Остается очень слабо светящееся быстро вращающееся ядро. Оно стремительно сжимается до радиуса 8-10 км, плотность составляет ρ=1015 г/см3, период обращения – 1,3 секунды. Звезда становится пульсаром, излучающим пучки горячих электронов с четкой периодичностью. В середине XX века сигналы, идущие от пульсаров, приняли за сигналы внеземных цивилизаций, этот феномен тогда получил название GLM (Green Little Men - маленькие зеленые человечки). (Прим. авт. консп.).

Постепенно вращение замедляется, и звезда прекращает своё существование.

 

 

Если масса звезды меньше, чем три массы Солнца, то она находится на главной последовательности меньше всего – несколько сотен миллионов лет. Затем она превращается в красный гигант, после чего из-за гравитационных сил происходит гравитационный коллапс. Наружная оболочка с взрывом отходит от звезды – взрыв сверхновой. Ядро затем исчезает из поля зрения наблюдателей, то есть, превращается в чёрную дыру. Около больших масс по общей теории относительности (ОТО) идёт искривление пространства. Внутри черной дыры пространство-время замыкается само на себя.

Rгравитационный=2GM/c2

Rгр.Солнца=2,8-3 км

Rгр.Земли=9-10 мм.

Пульсар излучает, а черная дыра не заметна сама по себе. Время на границе чёрной дыры замедляется, а внутри останавливается полностью. Вокруг чёрной дыры действует сильное гравитационное поле, и любые объекты вселенной, попадающие в это поле (галактики, звезды, планеты), разогреваются до очень сильной температуры. Прежде чем исчезнуть в чёрной дыре, поглощаемый объект выбрасывает интенсивное рентгеновское излучение. В 1970 году «Ухуру» - американский спутник, настроенный на анализ рентгеновского излучения, заметил много невидимых источников рентгеновского излучения.

Объект Лебедь XI – первая открытая чёрная дыра, на расстоянии 8000 световых лет.

Спутник «Чандра», запущенный американскими и российскими учёными. Открыто, что в центре галактики находится мощнейшая чёрная дыра.

 

Квазары.

 

Открыты Шмидтом в 1963 на краю метагалактики. НА краю галактики – светят с яркостью +11 - +13. Расстояние 600 МПк (около 2 миллионов световых лет). Квазары – квази-звезды – «похожие на звезды». Диаметр – несколько световых дней: много для звезды, мало для галактики. Квазары дают очень мощные электромагнитное излучение во всех диапазонах. В тысячи раз больше света, чем вся наша галактика. Любая звезда светится постоянно, квазар меняет своё излучение каждую неделю. Сейчас считают, что квазары – это гигантские чёрные дыры в центре образующихся галактик (в начале жизни вселенной).

 

Химический состав звёзд.

Из газопылевой туманности, сброшенной звездами после их горения, вновь образуются протозвезды, а затем звёзды нового поколения. В этих туманностях тяжелых элементов значительно больше, чем в предыдущей звезде, и в этом заключается эволюция вселенной – в накоплении тяжёлых элементов. Основная масса – водородно-гелиевая плазма.

На 10000 атомов водорода (H)приходится:

· 1000 атомов гелия (He)

· 5 атомов кислорода (O)

· 2 атома азота (N)

· 1 атом углерода (C)

· 0,3 атома железа (Fe)

 

Металличность звезды характеризуется отношением в звезде:

Это соотношение показывает возраст звезды. Чем меньше оно, тем старее звезда.

 

Тонкая подстройка вселенной – это совокупность многочисленных случайностей, которые привели к развитию именно такой вселенной, какой мы её наблюдаем, и которая привела к появлению разумной жизни. Эти случайности связаны с экспериментально доказанными законами физики и прежде всего с фундаментальными постоянными (ФП), входящими в выражения этих законов:

Скорость света, гравитационная постоянная, постоянна Планка, заряд электрона, масса электрона, масса протона, масса нейтрона, три координаты, безразмерная энтропия вселенной S~109. Все фундаментальные постоянные имеют строго количественное значение (выражение). При изменении их численных значений мир был бы иным. При увеличении постоянной Планка на 15% протоны не объединялись бы с нейтронами, следовательно, не было бы первичного нуклеосинтеза. Если бы гравитационная постоянная была на 10% меньше, то все звезды были бы красными карликами, если на 10% больше, то все звезды были бы белыми и голубыми.

Вывод 1: Физические характеристики материальных структур нашей вселенной от элементарных частиц до метагалактики определяются строгими числовыми значениями физических постоянных.

Вывод 2: Структурные образования вселенной очень чувствительны к значениям фундаментальных постоянных, и небольшое их изменение привело бы к невозможности существования наблюдаемой вселенной.

Эти два вывода и называют иногда тонкой подстройкой вселенной.

 

В 1958-м году Идлисом (СССР) сформулирован антропный принцип. Фундаментальные постоянные имеют именно те значения, при которых становится возможным существование во вселенной живых углеродных систем.

В 1974 Картер: Слабый антропный принцип показывает возможность появления человека во вселенной: то, что мы предполагаем наблюдать, должно удовлетворять условиям, необходимым для присутствия человека в качестве наблюдателя развития вселенной, так как если бы мир был другим, человек бы не появился. Сильный антропный принцип утверждает необходимость: вселенная должна быть такой, чтобы в ней на некоторой стадии эволюции обязательно появился бы человек как наблюдатель, то есть, при зарождении вселенной.

Антропный принцип ничего не предсказывает, просто объясняет:

1. Границы применимости физических законов и фундаментальных постоянных пока ограничиваются близлежащими галактиками, и науке не известно, будут ли они выполняться при больших масштабах.

2. По этим физическим законам с физическими постоянными предполагается только углеродная жизнь с водой в качестве растворителя.

 

Методы изучения звёздного неба.

 

  1. Визуально (до звездной величины +6)
  2. Телескопы (самые современные – до +33)

А. Рефракторы

Б. Рефлекторы (1999 г. – 32 м в диаметре)

В. Фотометры – измеряют яркость во времени

Г. Спектрографы – разложение света, химический состав звезд

Д. Интерферометры – радиотелескопы

Е. Телескопы с термоэлементами

 

Поиск внеземных цивилизаций.

Формула Дрейка:

Эта формула показывает число коммуникативных цивилизаций, то есть, способных вступить с нами в контакт в рассматриваемый момент времени. Время считают от момента образования первых звезд.

N0 – число подходящих мест для возникновения коммуникативных цивилизаций (КЦ).

FD – вероятность того, что на какой-то планете к моменту времени t возникает коммуникативная цивилизация.

Lc – средняя продолжительность жизни цивилизации.

Разброс значений FD очень велик:

Если FD=1, значит, существует 109 коммуникативных цивилизаций.

Если FD=10-6, значит, существует всего одна (наша) коммуникативная цивилизация.

 

Типы контактов между космическими цивилизациями:

1. Непосредственные посещения

2. Контакты по каналам связи – дециметровые, сантиметровые, миллиметровые волны

3. Смешанные контакты – космические радиозонды

 

Трудности для непосредственных контактов – длительность перелётов.

Две организации:

SETI – Search for Extraterrestrial Intelligence

CETI – Communication with Extraterrestrial Intelligence

 

 

Происхождение и эволюция солнечной системы и Земли.

 

По современным представлениям Солнце (как звезда) образовалось значительно раньше, чем планеты, примерно 5 миллиардов лет назад из газопылевой туманности звезды первого поколения. Гипотеза Канта-Лапласа. Кант в 1755 году предположил, что система образуется из холодной туманности, причем, Солнце раньше планет. Лаплас считал, что из горячей (1500°) туманности, сначала планеты, потом Солнце.

Хойл (1958), Альфен и Аррениус (1960-ее гг.) выработали единый механизм планетообразования во вселенной (по крайней мере, в метагалактике).

  1. Звезда должна обладать сильным магнитным полем.
  2. Пространство в окрестностях звезды должно быть заполнено сильно ионизированной плазмой.

 

Механизм образования планетной системы включает не только гравитацию, но и электромагнитные силы и плазменные процессы. Молодое Солнце, поскольку оно образовалось из очень горячей туманности доходило почти до орбиты Меркурия и имело огромную корону: протуберанцы доходили до орбиты Плутона, и токи там был в сотни миллионов Ампер.

Гипотеза Шмидта (1922, русс.) – Солнце, возможно, захватило часть другой туманности или что-либо еще. На это указывает дифференциация по химическому составу в трех «дисках» вокруг Солнца: более тяжёлые элементы ближе к Солнцу (планеты земной группы), далее легкие – Сатурн и Юпитер, еще дальше – совсем другие, не похожие ни на что планеты. Первыми образовались планеты земной группы, а через несколько сотен миллионов лет – Сатурн и Юпитер. Круговая скорость Солнца – 2 км/с. Суммарная масса всех планет составляет 1/700 массы Солнца.

 

Происхождение Земли.

К Солнцу магнитным полем были притянуты огромные массы железа и азота. Сутки были заметно короче, но с увеличением массы вращение замедляется. В самой Земле из-за вращения шло распределение химических элементов: более тяжёлые – в мантии и ядре, более легкие – в земной коре, а самые лёгкие образовали гидросферу и атмосферу. По исследованиям грунта радиолокационными методами возраст земли составляет 4,55 миллиардов лет (4550±50 млн. лет). Земля стала разогреваться за счет вулканической деятельности, первопричиной которой является естественная радиоактивность. Процесс радиоактивного разогрева. За год Земля теряет 7,94·1020 Дж энергии, но это намного меньше тепла, выделяющегося при радиоактивном распаде в недрах Земли. Первичная атмосфера Земли образовалась из-за вулканической деятельности и была восстановительной: CO2, NH, HCN, CH4, H2O. Резкое качественное изменение атмосферы Земли произошло около 2 миллиардов лет назад – появился кислород, так как произошло зарождение жизни: микроорганизмы стали, фотосинтезируя, производить его. За последние 200 миллионов лет состав атмосферы практически не изменился.

Сухой воздух:

N2≈78%

O2≈21%

Инертные газы ≈ 0,98% (Ar≈0,9%)

CO2≈0,032%

По одной из теорий, Земля на определенной стадии захватила очень много льда, в частности, из хвостов комет и, возможно, Нептун, Плутон и Уран, закручиваясь, выбрасывали огромные глыбы льда. Это так называемая теория космического происхождения воды на Земле. (Прим. авт. консп.)

Спектральный анализ химического состава Солнца, планет солнечной системы, метеоритов и астероидов, показал, что все они имеют единое происхождение.

Все тела солнечной системы построены в основном из небольшого числа химических элементов. После 28-го элемента таблицы Менделеева распространенность резко падает. Особенно распространены элементы с чётным массовым числом.

                   
H He Be C O Mg Si S Ca Fe

 

Из них наиболее устойчивы те, что имеют магические числа, когда Np=Nn.

 

Строение Земли.

Радиус ядра составляет 55% толщины. Во внутреннем ядре (твердое) преобладают железо, никель, сера. Во внешнем ядре (полужидкое) железо, никель, селен, в земной коре – SiO, магний, железо. В мантии сосредоточена основная часть массы – около 68%.

Кора состоит из осадочных пород: глина, песчаник, сланцы, граниты, базальты, в них – руды.

Дельсемм в 1983 году обнаружил близость соотношения атомов элементов в составе живых организмов, в межзвездном газе и газовом веществе комет (О, С, N, Н).

Земля обладает гравитационным, магнитным и электрическим полями. Гравитация описывается законом всемирного тяготения Ньютона. Магнитное поле складывается из двух составляющих: одна главная, очень медленно меняющаяся, существующая за счет существования магнитного ядра, 99%, другая, переменная составляющая, 1%, связана с магнитным излучением Солнца. Магнитные полюса Земли смещены по отношению к географическим. Переполюсовка происходит за период от нескольких сотен тысяч до нескольких миллионов лет. Поверхность земного шара заряжена отрицательно. Земное электрическое поле всё время меняется. В среднем E=130 В/м (Напряжённость). На расстоянии 2 м от поверхности Земли существует разность потенциалов в 200 В. Все точки лежащего человека находятся под одним потенциалом. С высотой напряженность падает. Полная разность потенциалов между поверхностью Земли и ионосферой составляет 400 тысяч вольт. Атмосфера заряжена положительно. Грозовые разряды не дают электричеству Земли уйти в космос. 1 удар молнии возвращает земле 20-30 Кл отрицательного электричества. Все напряжение электричества Земли составляет примерно 40000 В.


Химические концепции в современном естествознании.




Поделиться с друзьями:


Дата добавления: 2014-11-16; Просмотров: 399; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.