Пусть точка М движется по дуге окружности и сила F составляет некоторый угол α с касательной к окружности (рис. 15.5).
Вектор силы можно разложить на две составляющие:
Используя принцип независимости действия сил, определим работу каждой из составляющих силы отдельно:
Нормальная составляющая силы Fn всегда направлена перпендикулярно перемещению и, следовательно, работы не производит:
При перемещении по дуге обе составляющие силы разворачиваются вместе с точкой М. Таким образом, касательная составляющая силы всегда совпадает по направлению с перемещением.
Будем иметь:
Касательную силу Ft обычно называют окружной силой.
Работа при криволинейном пути — это работа окружной силы:
Произведение окружной силы на радиус называют вращающим моментом:
Работа силы, приложенной к вращающемуся телу, равна произведению вращающего момента на угол поворота:
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление