КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Сетчатка
Наружная пограничная мембрана Внутренняя пограничная мембрана Рис. 3.6.44. Строение клетки Мюллера сетчатой оболочки. Импрегнация серебром Б Б В Б Г Рис. 3.6.45. Схематическое изображение клетки Мюллера и ее отношение к структурным элементам сетчатой оболочки: / — внутренняя пограничная мембрана; 2 — слой нервных волокон; 3 — слой ганглиоз-ных клеток; 4 — внутренний плексиформный слой; 5 — внутренний ядерный слой; 6 — наружный плексиформный слой; 7 — наружный ядерный слой; 8 —наружная пограничная мембрана; А — радиально распространяющиеся отростки; Б — сотоподобные отростки; В — горизонально распространяющиеся отростки; Г — волокнистые «корзинки»
ного расположения. При этом мюллеровские клетки обеспечивают правильную ориентацию, перемещение и жесткое топографическое расположение нейронов в процессе эмбрионального развития сетчатки. Мюллеровские клетки обладают многочисленными отростками, выполняющими все межклеточные пространства ткани сетчатки и оплетающими тела нейронов. Различают четыре типа отростков мюлле-ровской клетки [1008] (рис. 3.6.45): 1. Радиальные отростки, распределяющиеся 2. Нежные горизонтальные отростки, рас 3. Тонкие, волосоподобные отростки, обра 4. Отростки, образующие ячеистую сетча Мюллеровские клетки формируют также ножкоподобные окончания на кровеносных сосудах сетчатки большого калибра. Клетки Мюллера прикрепляются к наружной пограничной мембране при помощи десмо-сом, а к нейронам при помощи плотных контактов [7, 39, 1120]. Между ними не выявлено щелевых синаптических контактов. Цитоплазма мюллеровских клеток неодинакова в различных участках. Эти структурные различия отражают функциональные особенности. Внутренняя половина клетки содержит шероховатую и гладкую эндоплазматическую сеть, аппарат Гольджи, митохондрии, свободные рибосомы и радиально ориентированные филаменты, диаметром 10—20 нм. Наличие перечисленных органоидов предполагает высокий уровнь белкового синтеза [684]. Внешняя, или склеральная, половина клетки приспособлена к поглощению метаболитов (эн-доцитоз) и их внутриклеточному транспорту. Вблизи наружной пограничной мембраны видны многочисленные микротрубочки и митохондрии. Вполне вероятно, что эти органоиды обеспечивают клетку энергией, необходимой для активного транспорта метаболитов. Наружная часть клетки содержит гликоген, количество которого зависит от степени оксиге-нации сетчатки [39]. Если в экспериментальных условиях уменьшить кровенаполнение сосудов сетчатки, то запас гликогена в клетках быстро истощится. Отмечено, что значительно возрастает количество гликогена в цитоплазме мюл-леровской клетки, расположенной на уровне внутреннего синаптического слоя в условиях световой адаптации. Иммуноморфологически показано, что цитоплазма клеток насыщена промежуточными филаментами, реактивными в отношении вин-ментина и глиального фибриллярного кислого белка. Последние два компонента можно обнаружить в норме только во внутренней части Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА
тела клетки. После травмы или отслойки сетчатой оболочки они распределяются по всему телу клетки [324, 427]. Какова основная роль мюллеровской клетки? Для того чтобы выяснить ее, необходимо напомнить особенности кровоснабжения сетчатки. Микроциркуляторная сеть сетчатки располагается с внутренней и наружной поверхностей сетчатки, вне нервных слоев ее. Капилляры не проникают внутрь сетчатки. Более того, наружная треть сетчатки обеспечивается питательными веществами сосудистой оболочкой путем диффузии. В этих условиях основным трофическим путем становится система капилляр — глиаль-ная клетка — нейрон. В этой системе центральную роль играет мюллеровская клетка. О высокой метаболической активности клеток Мюллера и возможной их роли в метаболизме медиаторов свидетельствуют данные гистохимии. Им-муногистохимическими исследованиями выявлено наличие в цитоплазме глютамина, таурина и глютамин синтетазы [737, 844]. Обнаружена также матричная РНК ангидразы 11 [475, 900], обеспечивающей буферные свойства межклеточного пространства сетчатки [778]. Мюллеров-ские клетки сетчатки крысы, культивированные in vitro, содержат матричную РНК инсулина, контролирующую метаболизм глюкозы [234]. Недавно показано, что клетки Мюллера могут синтезировать ретиноидную кислоту [235, 279]. Одной из наиболее важных функций мюллеровской клетки является разрушение нейроме-диаторов [39, 265, 780]. В электрофизиологических экспериментах доказано, что мюллеровские клетки генерируют медленный компонент электроретинограммы. При этом мюллеровская клетка играет роль К+ электрода. Ионы К+, высвобождаемые в результате деятельности нейронов сетчатки (в основном, биполярных клеток), концентрируются на поверхности мюллеровских клеток, затем проникают в их цитоплазму, что приводит к деполяризации мембраны. Этот процесс и является причиной формирования b-волны (медленный компонент) электроретинограммы [8, 779, 799]. Интересно, что потенциалы мюллеровских волокон регестрируются лишь в толще внутреннего синаптического слоя, т. е. в районе основного источника ионов калия и именно там, где концентрируется основная масса синапсов. Исходя из изложенного выше, видно, что мюллеровские клетки выполняют довольно разнообразные и важные функции. К ним можно отнести следующие: 1. Поставка нейронам сетчатки продуктов 2. Выведение продуктов обмена нейронов 3. Защита нейронов от избыточного высво
4. Фагоцитоз продуктов распада нейронов 5. Синтез ретиноидной кислоты из ретино 6. Защита нейронов путем контроля гомеоста- Нарушение функции мюллеровских клеток связывают с развитием многих заболеваний, в частности старческого и связанного с Х-хромо-сомой юношеского ретиношизиса. Глиальные клетки активно участвуют в процессах репарации при повреждении сетчатки. Путем иммунной гистохимии установлено, что мюллеровские клетки сетчатки крысы реагируют на повреждение, подобно астроцитам мозга, путем накопления кислого фибриллярного белка, играющего большую роль в процессах фиб-риллогенеза [ПО]. Накопление этого белка отмечено у людей в условиях реактивного глиоза сетчатки [752]. Дополнительная глия. В сетчатке выявлены клетки, лишь отдаленно напоминающие астро-циты, но не обладающие всеми их структурными признаками. Поскольку они тесно прилежат к ганглиозным клеткам, эти клетки были названы параганглиозными клетками (название схожее с перинейрональными клетками центральной нервной системы). По всей видимости, они выполняют трофическую функцию по отношению к ганглиозным клеткам.
Дата добавления: 2014-11-18; Просмотров: 505; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |