Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сетчатка 1 страница






 


Функциональное значение прямой электри­ческой связи между различными типами фото­рецепторов не совсем понятно. Первоначально многие исследователи предполагали, что такие связи разрушают пространственную интегра­цию фоторецепторов и соответственно воз­можность анализа функционирования цвето­вого зрения, «смешивая» информацию, полу­чаемую от палочек и колбочек. Тем не менее на основании многочисленных физиологических экспериментов установлено, что колбочки бла­годаря этим связям могут нести информацию палочек. Это, при определенных условиях, мо­жет иметь большое физиологическое значение [742, 773, 975, 999]. При этом изучены интим­ные механизмы этого процесса, правда, с ис­пользованием экспериментальных животных.

Внутренний ядерный слой. Внутренний ядерный слой состоит из 8—12 рядов плотно упакованных ядер биполярных, горизонталь­ных, амакриновых, межплексиформных и мюл-леровских клеток. При световой микроскопии можно различить четыре слоя, преимуществен­но содержащих тот или иной клеточный тип:

1. Слой горизонтальных клеток (наиболее
наружный).

2. Слой биполярных клеток (наружный про­
межуточный слой).

3. Слой мюллеровских клеток (внутренний
промежуточный).

4. Слой амакриновых и межплексиформных
клеток (самый внутренний).

Горизонтальные клетки (рис. 3.6.24— 3.6.25; 3.6.26, см. цв. вкл.). Отростки горизон-

Рис. 3.6.24. Особенности строения тел и дендритного поля различных типов горизонтальных клеток чело­века. Световая микроскопия (импрегнация серебром) (по Kolb, 1998)


Рис. 3.6.25. Схематическое изображение различных типов горизонтальных клеток:

а — горизонтальная клетка, контактирующая с колбочковым фоторецептором; б —горизонтальная клетка, контактирующая с палочковым фоторецептором; s — схематическое изображение характера контакта горизонтальных клеток различного типа в плоскости сетчатки

тальных клеток, в отличие от биполярных, об­разуют сеть, расположенную в горизонталь­ной плоскости и объединяющую фоторецепто­ры различных участков сетчатки.

Наибольшее количество горизонтальных клеток в области центральной ямки. Постепен­но по мере продвижения к периферии сетчатки их число снижается. Горизонтальные клетки имеют короткие отростки, а аксон не ветвит­ся вблизи тела клетки (на протяжении 200— 300 мкм). Длина аксона может достигать 2 мм.

В зависимости от размера клетки, особенно­стей строения синапсов между дендритами и аксонами, а также площади дендритного поля различают три типа горизонтальных клеток. Обозначаются они как клетки типов HI, НИ



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА


 


и НШ. Клетка HI отличается от остальных длинными мощными дендритами, входящими в контакт с колбочками при помощи «триад». Их аксон контактирует с палочкой. При этом обра­зуются так называемые «точечные» синапсы [592, 597, 600]. Аксон также образует синапсы на дендритах биполярных клеток палочек.

Приведенная выше схема синаптических связей является основой обработки информа­ции, получаемой от многочисленных палочек. При этом информация собирается по площади сетчатки, превышающей площадь дендритного поля клетки.

Клеток типа НШ на 30% больше, чем типа HI, и они контактируют с колбочками.

Клетки типа НИ имеют тонкие дендриты и короткие (100—300 мкм) аксоны. Как дендри­ты, так и аксоны контактируют только с кол­бочками.

Недавние электронномикроскопические ис­следования сетчатки человека показывают, что существуют определенные закономерности в контакте между колбочками различных спект­ральных характеристик и различными типа­ми горизонтальных клеток [45, 46, 230, 391] (рис. 3.6.26). Необходимо отметить, что клетки типа HI контактируют с колбочками всех спек­тральных типов. Наименее часто они контак­тируют с коротковолновыми («синими») кол­бочками. Клетки типа НИ, наоборот, чаще кон­тактируют именно с «синими» колбочками, а клетки НШ с колбочками вообще не контакти­руют [597]. На основании этих данных предпо­лагают, что клетки типа HI можно рассматри­вать как клетки «яркости», а клетки типов НИ и НШ как клетки воспринимающие цвета.

Горизонтальные клетки млекопитающих ха­рактеризуются также наличием многочислен­ных «щелевых контактов» между дендритами соседних клеток [594]. Благодаря этим контак­там сигнал распространяется в плоскости син­цития нейронов сетчатки. Помимо электричес­кого сигнала через эти контакты могут прохо­дить и низкомолекулярные вещества.

Строение тела горизонтальных клеток раз­личных типов схоже. Тело клетки обычно упло­щено и имеет диаметр 6—8 мкм. Ядро круглое и окружено аппаратом Гольджи. Цитоплазма содержит гладкую и шероховатую эндоплаз-матическую сеть, четкие митохондрии и много­численные свободные рибосомы. Характерной особенностью горизонтальных клеток является наличие в цитоплазме включений, так назы­ваемых телец или «кристаллоида Колмера», описанного Колмером еще в 1918 г. [602]. Эти образования имеют длину 8—20 мкм и ширину 0,3—1,5 мкм и чаще обнаруживаются вблизи ядра, но видны и в цитоплазматических отрост­ках [1119, 1212]. Состоят они из пакетов па­раллельно расположенных плотных трубочек в количестве от 5 до 30, отделенных проме­жутком шириной 2—6 мкм. Каждая трубочка


складывается из 2—3 концентрических мемб­ран, на внутренней и внешней поверхностях которых лежат рибосомоподобные частицы, чувствительные к рибонуклеазе [1008]. Предпо­лагают, что эти образования представляют со­бой своеобразную форму шероховатой эндо-плазматической сети. Функции горизонтальных клеток разнообразны. Более подробно о них будет изложено в 4-й главе. Здесь мы остано­вимся лишь на некоторых из них.

Во-первых, необходимо указать, что гори­зонтальные клетки интегрируют сигналы, по­ступающие от палочек и колбочек с выделе­нием так называемых «каналов» передачи ин­формации различного типа. При этом именно на уровне горизонтальных клеток уже четко определяется формирование структурно-функ­циональных нейронных единиц — «рецептивных полей» (см. главу 1 и 4), имеющих фундамен­тальное значение в обработке зрительной ин­формации и передаче ее более высоко располо­женным отделам центральной нервной систе­мы. Именно благодаря «рецептивным полям» и формируются основные физиологические харак­теристики зрительного восприятия, такие как «контрастность», «цветовое зрение» и др.

Во-вторых, на основании выявления нейрон­ных связей между горизонтальными клетками и фоторецепторами, а также физиологических исследований установлено, что горизонтальные клетки посылают зрительную информацию че­рез синапсы обратной связи назад к фоторецеп­торам. Эти обратные связи способствуют функ­ционированию «рецептивных полей».

В-третьих, благодаря наличию избиратель­ных многоконтактных обратных связей горизон­тальных клеток с палочками и колбочками раз­личных спектральных характеристик, именно горизонтальные клетки объединяют и обраба­тывают весь широкий спектр цветовой инфор­мации.

Биполярные клетки (рис. 3.6.27, 3.6.28). Биполярные клетки являются вторым нейроном зрительного пути. В каждой сетчатке содер­жится приблизительно 35 676 000 подобных клеток [137].

Тела этих клеток располагаются во внутрен­нем ядерном слое, а их отростки распространя­ются на наружный и внутренний плексиформ-ные слои.

Диаметр тела клетки в области желтого пят­на равен 9 мкм, а в периферических отделах сетчатой оболочки — 5 мкм. В зависимости от типа синаптических отношений с другими клет­ками различают 9 основных типов биполярных клеток [138, 171, 600, 601, 693]. Восемь типов клеток относятся к биполярным клеткам колбо­чек и один тип к биполярным клеткам палочек. Это следующие типы:

1. Биполярные клетки палочек (щеткопо-
добные).

2. Инвагинированные карликовые.


Сетчатка



 


       
 
   
 



BB

DBl FMB DB2 DB3 DB4 DB'

DB6

Рис. 3.6.27. Основные типы биполярных клеток сетчат­ки человека (по Kolb, I998):

DB— клетки диффузного типа; MB — карликовые клетки; ВВ — клетки «синих» колбочек; GBB — гигантские двухслойные; RB — биполярные клетки палочек. Приведенные слева цифры указывают уровень распространения дендритов клеток во внут­реннем плексиформном слое

Рис. 3.6.28. Ультраструктурные особенности синап-тических контактов биполярных клеток на уровне внутреннего плексиформного слоя (по Kolb, 1998):

I — амакриновая клетка; 2 — биполярная клетка; 3 —ганглиоз-

ная клетка. Кружками указаны места формирования синапсов

между различными типами клеток

3. Плоские карликовые.

4. Плоские диффузные.

5. Инвагинированые диффузные.

6. Биполярные клетки «синих» колбочек,
образующие ON-центр «рецептивные поля».

7. Биполярные клетки «синих» колбочек,
образующие OFF-центр «рецептивные поля».

8. Гигантские двухслойные.

9. Гигантские диффузные инвагинированные.
Биполярные клетки палочек (щеткопо-

добные) составляют 20% от общего числа биполярных клеток. Расположены они на рас­стоянии 1 мм от желтого пятна. Диаметр денд­ритного дерева клеток увеличивается по мере приближения клеток к периферии сетчатки


[600]. В наружном плексиформном слое основ­ной дендрит клетки делится на 2—3 ветви, ко­торые после прохождения между «ножками» колбочек образуют в виде щеточек отростки, проникающие в сферулу палочки.

В центральных участках сетчатки дендрит­ное поле горизонтальных клеток маленькое (15 мкм) и дендриты контактируют с 15—20 палочками. По периферии сетчатки дендритное поле больше (до 30 мкм) и клетка входит в контакт с 40—50 палочками.

Аксоны биполярной клетки палочки во внут­реннем плексиформном слое образуют синапсы с отростком амакриновой клетки, дендритами и телами клеток диффузных ганглиозных клеток (рис. 3.6.23, 3.6.28).

Плоские карликовые клетки самые малень­кие. Дендриты клеток, имеющие вид пучка, проникают в «триаду» «ножек» колбочек. Апи­кальный дендрит экстрафовеолярных карлико­вых биполярных клеток делится на две части. При этом он образует синапсы с двумя раз­личными колбочками. Аксоны переходят через внутренний плексиформный слой и образуют синапсы с отростками амакриновых клеток и дендритами «карликовых» ганглиозных клеток (рис. 3.6.28). В области центральной ямки одна карликовая биполярная клетка контактирует с одной колбочкой [600]. Эти биполярные клетки участвуют в образовании OFF-центр «рецеп­тивных полей» колбочковой системы.

Плоские диффузные и инвагинированные «карликовые» биполярные клетки обладают многочисленными дендритами, заканчивающи­мися на «ножках» многих колбочек. Апикаль­ный дендрит этих клеток разветвляется в на­ружном плексиформном слое, распространяясь в горизонтальной плоскости. Кроме того, эти биполярные клетки формируют обширную сеть в перифовеолярной области [600]. Инвагниро-ванные «карликовые» биполярные клетки уча­ствуют в формировании ON-центр «рецептив­ных полей» колбочковой системы.

Биполярные клетки «синих» колбочек об­разуют синапсы более чем с одной «ножкой» колбочек [171, 425, 600]. Биполярные клетки «синих» колбочек чаще встречаются в 4 мм от желтого пятна, а их аксональные терминалы простираются до 30 мкм. Эти клетки имеют также два мощных дендрита, которые заканчи­ваются на той же самой колбочке или на дру­гой колбочке или в нейропиле наружного плек­сиформного слоя.

Различают два типа гигантских биполяр­ных клеток. Это деление определяется про­тяженностью дендритов клеток. В централь­ных участках сетчатки длина дендритов равна 50 мкм, а по периферии 100 мкм [600]. Би­полярная клетка подобного типа объединяет 15—20 колбочек.

Гигантская диффузная биполярная клетка имеет толстый дендрит, который делится на



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА


 


три длинные ветви, а также раздваивающийся аксон. Аксон заканчивается в 4-м слое внут­реннего плексиформного слоя. Если бы не раз­мер дендритного поля, гигантские диффузные биполярные клетки имели бы строение анало­гичное строению плоской диффузной биполяр­ной клетки.

Все типы биполярных клеток близки по уль­траструктурной организации. Ядро их круглое или овальное с одним или двумя ядрышками. Аппарат Гольджи, как и центриоли, располага­ется на участке выхода большого дендрита. Выполняют цитоплазму также рибосомы, шеро­ховатый эндоплазматический ретикулум, мито­хондрии. В дендритах (толщина 0,1—0,2 мкм) также обнаруживаются митохондрии и микро­трубочки, пузырьки и микрофиламенты (диа­метр 20 нм). Аксональный бугорок расположен напротив выхода дендрита. В аксонах биполяр­ных клеток выявляются и нейротрубочки (диа­метр 12,5 нм). До внутреннего плексиформного слоя аксоны окружены отростками мюллеров-ских клеток.

После потери глиальной оболочки аксон об­разует утолщение (телодендрон), содержащее большое количество синаптических пузырьков, особенно вокруг синаптической ленты. Эффе­рентный или постсинаптический телодендрон обладает обычными синапсами, в то время как эфферентные отростки, образующие пресинап-тический контакт с амакриновыми и ганглиоз-ными клетками, обладают типичными ленточ­ными синапсами.

Необходимо указать и на то, что основная часть внутреннего промежуточного слоя внут­реннего ядерного слоя занята телами мюлле-ровских клеток, хотя они могут быть обнаруже­ны и в любом другом слое сетчатки. Более подробно строение мюллеровской клетки изло­жено ниже.

Амакриновые клетки (рис. 3.6.29—3.6.31). Амакриновые клетки представляют собой ней­роны, которые взаимодействуют на втором уровне вертикального пути передачи зритель­ной информации, а именно в направлении: фо­торецептор — биполярная клетка — ганглиоз-ная клетка. Они формируют синапсы во внут­реннем плексиформном слое. Эти клетки объединяют, а затем первично обрабатывают поступающую от биполярных клеток информа­цию и передают ее ганглиозным клеткам [39, 226, 228]. Тела амакриновых клеток находят­ся несколько кнутри от ядер клеток Мюллера. Каждая амакриновая клетка имеет единствен­ный отросток, обладающий свойствами денд­рита и аксона. Отростки распространяются в обширной области во внутреннем плексиформ­ном слое.

Тело амакриновой клетки имеет форму кол­бы диаметром 12 мкм. Располагаются они во внутреннем ядерном слое за исключением обла­сти желтого пятна. Цитоплазма содержит мно-


Рис. 3.6.29. Особенности распределения отростков

амакриновых клеток во внутреннем плексиформном

слое (объяснение в тексте)

Рис. 3.6.30. Амакриновые клетки сетчатки, дающие по­ложительную иммунногистохимическую реакцию, вы­являющую серотонин (а) и допамин (б) (по Kolb, /995)


Сетчатка



 


Рис. 3.6.31. Схематическое изображение синаптичес-

ких контактов между биполярными, амакриновыми и

ганглиозными клетками во внутреннем плексиформном

слое (по Hogan et al., 1971):

I — ганглиозные клетки; 2 — биполярная клетка; 3 — амакрино-вая клетка; А — аксодендритное окончание в диаде; Б — аксо-соматическое окончание на ганглиозной клетке; В — контакт между амакриновой и биполярной клетками; Г —аксоаксонный контакт между отростками амакриновой и биполярной клетками; Д — аксодендритный контакт между амакриновой и ганглиозной клетками; £—аксосоматический контакт между отростком ама­криновой клетки и ганглиозной клеткой

гочисленные митохондрии, шероховатую эндо-плазматическую сеть (вещество Ниссля) и мно­жество липидных включений. На внутренней поверхности клетки недалеко от ядра располо­жена ресничка.

В сетчатке человека амакриновые клетки отличаются разнообразным строением, и их описано 24 типа [154, 600]. При импрегнации сетчатки серебром по Гольджи выделяют два главных типа клеток: 1) диффузные и 2) стра­тифицированные.

Главный отросток клеток диффузного типа распространяется через все слои внутреннего плексиформного слоя. На его внутренней по­верхности отросток разветвляется, формируя плотное горизонтально расположенное сплете­ние. В зависимости от протяженности отрост­ков диффузные амакриновые клетки подраз­деляются на «узкопольные», охватывающие область шириной 10—50 мкм (составляет в среднем 25 мкм) и «широкопольные». Послед­ние клетки во внутреннем плескиформном слое


распространяются на 30—50 мкм, а в слое ган-глиозных клеток до 600 мкм.

«Широкопольные» диффузные амакриновые клетки вступают в контакт с терминалами би­полярных клеток палочек и ганглиозных клеток.

В зависимости от уровня расположения от­ростков во внутреннем плексиформном слое амакриновые клетки можно подразделить на следующие типы: нестратифицированные, муль-тистратифицированные и диффузные. Внут­ренний плексиформный слой еще Кахалом был условно подразделен на 6 слоев (страты). Это подразделение на слои используется морфо­логами для классификации амакриновых кле­ток до настоящего времени (рис. 3.6.29). Не­стратифицированные амакриновые клетки ле­жат во внешней половине внутреннего плекси­формного слоя и отдают отростки, длиной до 500 мкм.

Отростки мультистратифицированных кле­ток разделяются на ветви, простирающиеся на расстояние до 400—600 мкм. При этом они занимают два или более уровней во внутреннем плексиформном слое. Ядра стратифицирован­ных диффузных клеток меньше, чем ядра дру­гих амакриновых клеток, а их отростки охва­тывают область, шириной не более 50 мкм.

Амакриновые клетки также можно класси­фицировать по обнаруживаемому в них типу нейромедиаторов. Нейромедиаторами этих кле­ток являются нейроактивные вещества (ацетил-холин, гамма-аминомасляная кислота (ГАМК), глицин, допамин, серотонин) и нейропептиды (холецистокинин, энкефалин, глюкагон, нейро-тензин, соматостатин, вещество Р, нейропеп-тид Y и вазоактивный кишечный пептид). В од­ной клетке могут присутствовать два или более перечисленных медиатора. Большинство ама­криновых клеток содержат ГАМК, глицин, се­ротонин и допамин [154, 219, 237] (рис. 3.6.30).

Физиологическое значение амакриновых кле­ток интенсивно изучается в последние годы. Именно благодаря одновременному использова­нию морфологических, иммуногистохимических и электрофизиологических методов исследова­ния выявлен ряд функций этих клеток. Полу­чены эти данные в экспериментах на животных, в частности на кошках (см. главу 4).

У кошек различают несколько типов амакри­новых клеток, функции которых достаточно хо­рошо изучены. Это амакриновая клетка А2, АН, А8, А13, А17, А19, А20, А22 и др. Об их роли будет рассказано в главе 4, посвященной зри­тельному пути.

Межплексиформные клетки. Межплекси-формные клетки описаны Gallego в 1971 г. [366]. Ядра межплексиформных клеток занима­ют самую внутреннюю часть внутреннего ядер­ного слоя. Поскольку тела клеток располагают­ся между амакриновыми клетками, некоторые авторы не выделяют этот тип клеток. Тем не менее отростки межплексиформных клеток, в



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА


 


отличие от амакриновых, простираются на плексиформные слои [600]. Отростки к наруж­ному плексиформному слою отходят непосред­ственно от тела межплексиформнои клетки или от их отростков. Сенсорный вход к межплек-сиформную клетку обнаруживается во внут­реннем плексиформном слое, а большинство синапсов располагается в наружном плекси­формном слое. Таким образом, информация передается между двумя указанными слоями. Межплексиформные клетки по своей природе относятся к центрифугальным нейронам. В сет­чатке человека синапсы обнаруживаются, в основном, между межплексиформными клетка­ми и горизонтальными клетками колбочек, по­лучая при этом информацию от отростков ама-криновой клетки [661]. В зависимости от ис­пользуемого нейромедиатора межплексиформ­ные клетки позвоночных разделяют на три типа [526]. Это клетки, использующие ГАМК, тиро­зин гидроксилазу и глицин. У человека выявлен только 1 тип клеток (ГАМК) [154, 219].

Внутренний сетчатый (плексиформный) слой (рис. 3.6.1, см. цв. вкл.; 3.6.31). Во внут­реннем плексиформном слое контактируют вто­рой (биполярная клетка) и третий (ганглиозная клетка) нейроны сетчатки. В пределах этого же слоя также взаимодействуют амакриновые и межплексиформные клетки. Кроме синаптичес-ких связей между биполярными, ганглиозными, амакриновыми и межплексиформными клетка­ми этот слой содержит отростки мюллеровских клеток, а также обильную сосудистую сеть и ядра единичных ганглиозных и амакриновых клеток.

Внутренний плексиформный слой толще на­ружного плексиформного слоя. Отсутствует он только в области желтого пятна.

Во внутреннем плексиформном слое видны многочисленные синапсы, плотность которых достигает 2 млн в мм2 [263].

Существуют определенные ультраструктур­ные особенности этого слоя сетчатки. Именно в этом слое биполярные клетки вступают в си-наптический контакт с отростками амакрино­вых клеток и дендритами ганглиозных клеток, образуя так называемую «диаду». Наиболее часто один из элементов «диады» представляет собой дендрит ганглиозной клетки, а другой — отросток амакриновой клетки. Подобный тип синаптичекой организации соответствует нали­чию в этой области так называемых ганглиоз­ных клеток «контрастности».

Реже в «диаде» обнаруживается два отрос­тка амакриновой клетки или, что более редко, два дендрита ганглиозной клетки (рис. 3.6.31). Отростки амакриновых клеток связываются с аксонами биполярной клетки, телами и дендри­тами ганглиозных клеток посредством синапсов обычного строения. Межплексиформные клет­ки также образуют обычные синапсы, главным образом, с отростками амакриновых клеток.


В этом слое существует два уникальных ти­па синапсов, свойственных только амакриновым клеткам. Это «реципроктный» и «последова­тельный» синапсы. В «реципроктном» синапсе отросток амакриновой клетки в «диаде» обра­зует синапс с терминалом биполярной клетки, обеспечивая, таким образом, обратную связь между амакриновой и биполярными клетками около синаптической ленты. «Последователь­ный синапс» состоит из двух последовательно расположенных синапсов между двумя отрост­ками амакриновых клеток, а третий синапс об­разуется с дендритом ганглиозной клетки, аксо­ном биполярной клетки или другим отростком амакриновой клетки. Эта сеть обеспечивает вза­имодействие соседних амакриновых клеток.

Синапсы амакриновых клеток располагают­ся слоями. Так, в области желтого пятна об­наруживается только два слоя синапсов, а по периферии число их слоев достигает пяти [154, 605].

Слой ганглиозных клеток (рис. 3.6.1, см. цв. вкл.). Слой ганглиозных клеток состоит в основном из тел ганглиозных клеток. В этом слое обнаруживаются также отростки мюлле­ровских клеток, нейроглия и сосуды сетчатой оболочки. Ганглиозные клетки получают обра­ботанные зрительные сигналы от предшествую­щих двух нейронов, обрабатывают их и переда­ют в центральную нервную систему [39, 154].

Ганглиозные клетки по периферии сетчатки образуют один слой клеток. С височной сторо­ны диска зрительного нерва выявляется 2 слоя клеток, а по краям желтого пятна 6—8 слоев. В центре желтого пятна и диске зрительного нерва ганглиозные клетки отсутствуют.

Толщина слоя ганглиозных клеток колеблет­ся от 10 до 20 мкм в назальной части сетчатки до 60—80 мкм в области желтого пятна [137].

В сетчатке взрослого определяется от 0,7 до 1,5 млн ганглиозных клеток. Соседние гангли­озные клетки плотно прилегают друг к другу за исключением периферии сетчатки. Здесь рас­стояние между ними достигает 400 мкм. Каж­дая клетка имеет один аксон. Собираясь на внутренней поверхности сетчатки, аксоны по­кидают глазное яблоко и формируют зритель­ный нерв.

В кольце, опоясывающем желтое пятно сет­чатки, которое находится на расстоянии 0,4— 2,0 мм от пятна, плотность ганглиозных кле­ток колеблется от 32 000 до 38 000 клеток в мм2 [223]. По периферии плотность ганглиоз­ных клеток в назальном квадранте в три разе превышает таковую в темпоральном квадранте. Плотность клеток в верхнем квадранте превы­шает плотность клеток в нижнем квадранте на 60%. Отношение количества колбочек к коли­честву ганглиозных клеток колеблется от 2,9:1 до 7,5:1.

В слое ганглиозных клеток обнаруживает­ся до 3% амакриновых клеток в центральных


Сетчатка



 



>,'!П

областях сетчатки, по периферии почти 80% [223]. Ганглиозные клетки больших размеров (диаметр от 10 до 30 мкм), круглой или оваль­ной формы. В области желтого пятна размер клеток несколько меньше [39, 154].


 

 

В цитоплазме развита шероховатая эндо-плазматическая сеть (вещество Ниссля) и ап­парат Гольджи (рис. 3.6.32). Обнаруживаются также диффузно распределенные фрагменты гладкой эндоплазматической сети, митохонд­рии, капельки липидов и пигментные гранулы. С возрастом отмечается увеличение количества зерен липофусцина. С этим связывают усиле­ние желтизны макулярной области.

Рис. 3.6.32. Ультраструктурные особенности ганглиоз-ной клетки (по Hogan, 1966):

отмечается хорошее развитие шероховатой эндоплазматической сети (стрелки). Цитоплазма насыщена овальными пигменти­рованными частицами, придающими сетчатке желтоватый цвет

Ганглиозные клетки обладают многочислен­ными нейрофиламентами, что позволяет легко отличать ганглиозные клетки от мюллеровских.

Ганглиозные клетки относятся к мультипо-лярным нейронам. Их дендриты распределяют­ся в горизонтальной плоскости сетчатки, а так­же проникают во внутренний плексиформный слой. Их аксоны направляются к слою нервных волокон, где они ориентируются параллельно внутренней поверхности сетчатки (рис. 3.6.33).

Ганглиозные клетки классифицируют в со­ответствии с размером тел клеток, степенью развития отростков и их протяженности. Клас­сифицируют их также по типу синаптической связи с амакриновыми и биполярными клет­ками.

В последние годы описано приблизительно 18 различных морфологических типов ганглиоз-ных клеток. Пока не совсем ясно, являются они только морфологической разновидностью ос­новного типа клеток или различны и их функ­ции [39, 600].


Рис. 3.6.33. Особенности строения тела ганглиозных

клеток и их дендритного поля в различных участках

сетчатой оболочки (по Polak, 1940):

а — область центральной ямки; б — область экватора; в — пери­ферия

В глазном яблоке человека идентифициро­вано два основных типа клеток, обозначенных как клетки М (зонтикоподобные) и клетки Р. В свою очередь клетки Р подразделяются на два подкласса: Р1, или карликовые нейроны, и Р2 (рис. 3.6.34).




Поделиться с друзьями:


Дата добавления: 2014-11-18; Просмотров: 840; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.087 сек.