КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Порівняння методів одновимірного пошуку
Найкращими критеріями порівняння методів пошуку, які були описані вище, є їх ефективність і універсальність. Під ефективністю алгоритму розуміють число обчислень функції, необхідне для досягнення необхідного звуження інтервалу невизначеності. Із табл. 13.1 видно, що найкращим в цьому відношенні є метод Фібоначчі, а найгіршим – метод загального пошуку. Конструктор не з великим задоволенням використовує метод Фібоначчі, так як при його застосуванні необхідно заздалегідь задавати число обчислень значень функції. Однак він може скористатися методом золотого перетину. Як правило, методи Фібоначчі і золотого перетину, володіють високою ефективністю, найбільш підходять для розв’язку одновимірних унімодальних задач оптимізації. Універсальність алгоритму означає, що його можна легко застосувати для розв’язку самих різноманітних задач. В цьому відношенні метод Фібоначчі, поступається іншим, так як потребує окремого обчислення положення точок, в яких будуть визначатися значення цільової функції на кожному новому кроці. Цим приходиться розплачуватися за підвищення ефективності метода. З точки зору універсальності малоефективний метод загального пошуку має по крайній мірі одну перевагу – його можна з успіхом застосовувати і для неунімодальних функцій, якщо вони достатньо гладкі. Нерідко заздалегідь не відомо, чи є розглянута цільова функція унімодальною. В таких випадках слід використати декілька різних алгоритмів і подивитись, чи дають вони усі один і той самий оптимум. Звідси витікає важливий висновок, який слід мати на увазі, розв’язуючи задачі оптимізації: не існує універсального алгоритму, який дозволяв би розв’язувати будь-які задачі. Вирішуючи складні задачі оптимізації, слід користуватися різними методами, так як це дозволяє збільшити долю вигідних розв’язків. Таблиця 13.1 Порівняння методів одновимірного пошуку по значенням коефіцієнта дроблення інтервалу невизначеності f
Приклад 1. Одновимірна мінімізація в середовищі Mathcad Для знаходження мінімуму одновимірної функції в середовищі Mathcad використовується функція root(f(var1, var2,...),var1, [a, b]) – повертає змінну var1, що лежить між a і b, в якій функція, що розв’язується дорівнює нулю. Параметри: f – рівняння, яке потрібно розв’язати; var1 – корінь рівняння; [a, b] – відрізок, на якому шукається розв’язок рівняння. Наприклад, необхідно знайти мінімум гладкої унімодальної функції у=х2+ех, використовуючи необхідну умову мінімуму. Визначимо цільову функцію
Визначимо першу похідну цільової функції
Визначимо другу похідну цільової функції
Достатня умова унімодальності (f''(x)>0) виконана
Мінімум гладкої функції досягається в стаціонарній точці (f'(x)=0). Розв’яжемо рівняння f'(x)=0, використовуючи функцію root; початкове наближення кореня нехай дорівнює нулю (х=0)
Точка мінімуму х=-0.351732 Значення функції в точці мінімуму
Підтвердимо результати обчислень графічно
Дата добавления: 2014-11-08; Просмотров: 643; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |