КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Изображение плоскости на комплексном чертеже
Теорема о проецировании прямого угла Если одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то прямой угол на эту плоскость проекций проецируется без искажения. Доказательство (рисунок 1.3.11). По условию АВ^ВС и АВ//П1. На основании прямоугольного проецирования АВ^ВВ1, следовательно, АВ┴γ(ВС∩ВВ1), так как АВ^ВС и АВ^ВВ1. По условию АВ//А1В1, следовательно А1В1┴γ, т.е. и к прямой В1С1 этой плоскости. Значит угол между прямыми А1В1 и В1С1 равен 90º. Из теоремы следует, что если одна сторона прямого угла является прямой уровня, то прямой угол проецируется без искажения на плоскость проекций, параллельную этой стороне.
Рисунок 1.3.11 – Проецирование прямого угла Плоскость можно задать: - тремя точками, не лежащими на одной прямой; - прямой и точкой, не лежащей на этой прямой; - двумя пересекающимися прямыми; - двумя параллельными прямыми; - отсеком. Наиболее наглядным является задание плоскости отсеком. Простейшим из отсеков является треугольник.
Рисунок 1.3.12 – Положение плоскости относительно плоскостей проекций
Как и в случае с прямыми линиями различают плоскости общего и частного положения. Плоскости, наклонённые ко всем плоскостям проекций, называются плоскостями общего положения (например, плоскость W на рисунке 1.3.12). Плоскости, перпендикулярные либо параллельные плоскости проекций, называются плоскостями частного положения (в соответствии с рисунком 1.3.12 это плоскости S, D, Q, Г, Ф, Р ). По аналогии с прямыми линиями плоскости частного положения разделяются на проецирующие плоскости, т.е. перпендикулярные плоскости проекций (плоскости S, D, Q на рисунке 1.3.12) и плоскости уровня – параллельные плоскости проекций (плоскости Г, Ф, Р). Плоскость общего положения, как и прямая общего положения, может быть восходящей и нисходящей. На комплексном чертеже проекции восходящей плоскости ориентированы одинаково, а нисходящей – противоположно. Изображение нисходящей плоскости соответствует рисунку 1.3.16.
Дата добавления: 2014-11-18; Просмотров: 820; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |