Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Момент инерции. Связь линейных и угловых характеристик




Связь линейных и угловых характеристик

Равнопеременное вращение

Если угловое ускорение ε = const, то вращательное движение называется равнопеременным. Равнопеременное вращение характеризуется следующими уравнениями:

и w = w0 + e t,

w 0 и j 0 – угловая скорость и угол поворота тела в начальный момент t 0=0,

w и j – в момент времени t. При ускоренном вращении в этих уравнениях выбирается знак «+», а при замедленном – знак «–».

 

Если точка тела отстоит от оси вращения на расстоянии r, то за время dt она проходит путь

dS = d j × r

Скорость точки

, или v = w ×r

При вращении тела тангенциальное ускорение его точки

, или

a t =e×r

Нормальное ускорение точки тела

, или

/a n =w 2×r

Полное ускорение, как указывалось ранее, определяют по формуле

 

Момент инерции - скалярная величина, характеризующая распределения масс в теле и являющаяся наряду с массой мерой инертности тела при непоступательном движении.

Единица измерения СИ: кг·м². Обозначение: I или J.

Момент инерции тела относительно оси вращения зависит от массы тела и от распределения этой массы относительно этой оси. Чем больше масса тела и чем дальше она отстоит от воображаемой оси, тем большим моментом инерции обладает тело.

Момент инерции элементарной (точечной) массы mi, отстоящей от оси на расстоянии ri, равен:

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

,

где:

mi — масса i -й точки,

ri — расстояние от i -й точки до оси.

,

где:

— масса малого элемента объёма тела ,

— плотность,

— расстояние от элемента до оси a.

Если тело однородно, то есть его плотность всюду одинакова, то

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения
Тело Описание Положение оси a Момент инерции Ja
Материальная точка массы m На расстоянии r от точки, неподвижная
Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра
Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра
Полый толстостенный цилиндр массы m с внешним радиусом r2 и внутренним радиусом r1 Ось цилиндра
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец
Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы
Шар радиуса r и массы m Ось проходит через центр шара

Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы, формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния а между осями:

J = Jc + ma2.

Рис. 3

где — полная масса тела (рис. 3).

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

.




Поделиться с друзьями:


Дата добавления: 2014-11-18; Просмотров: 835; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.