КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Модель математического программирования
ПРОГРАММИРОВАНИЯ ОБЩАЯ ЗАДАЧА МАТЕМАТИЧЕСКОГО
Модель общей задачи математического программирования состоит из целевой функции (1.1) и ряда ограничений (1.2-1.3): (1.1) (1.2) , (1.3) где – известные функции, а – заданные коэффициенты. Функция выражает в аналитической форме критерий экономической эффективности в зависимости от планируемых параметров производства и называется целевой функцией или критерием оптимальности. Ограничения (1.2) называются технологическими; их правые части представляют собой фиксированные объемы имеющихся в распоряжении ресурсов. Значения , удовлетворяющие ограничениям (1.2-1.3), называются допустимым планом. Решение задачи математического программирования называется оптимальным планом. Это такой набор значений , при котором выполняются ограничения (1.2-1.3) и целевая функция (1.1) принимает максимальное значение. Задача минимизации целевой функции может быть сведена к решению задачи нахождения ее максимума, так как . Часто в задачах, возникающих на практике, система технологических ограничений (1.2), содержит, кроме неравенств со знаком «≤», равенства и неравенства «≥». Однако это не сказывается на общности постановки задачи (1.1-1.3), поскольку такие ограничения легко преобразуются в стандартный вид вычитанием из левых частей дополнительных неотрицательных переменных. В зависимости от вида функций задачи математического программирования делятся на две большие группы – линейные и нелинейные. Если хотя бы одна из функций, входящих в математическую модель нелинейна, то задача относится к нелинейному программированию.
Дата добавления: 2014-11-18; Просмотров: 862; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |