Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема 1 5. Законы идеальных газов




15.1 Макроскопические состояния

Число молей вещества: ν = m/M; ν = V/VM, где m – масса; M - молярная масса; V – объем, VM – молярный объем.
Масса одной молекулы: m0= M/NA; m0 = ρ/n, где М – молярная масса, NA = 6,023·1023 моль-1 - число Авогадро; ρ - плотность; n0 - концентрация, определяется из соотношений: n0 = N/V; n = ρ/m0; n = NA/M.
Число молекул в данной массе вещества: N = m/m0 = m Na/M.
Термодинамическая температура связана с температурой шкалы Цельсия T ,K = t°C +273,15; t°C = T,K – 273,15°С

9.2 Уравнения состояния идеального газа. Изопроцессы

Уравнения состояния идеального газа (уравнение Менделеева –Клапейрона): для одного моля газа; pVм = RT - для произвольной массы газа: pV = mRT/M; pV = νRT - где Vм - молярный объем; M - молярная масса; m – масса газа; ν = m/M -количество вещества; R – универсальная газовая постоянная
Объединенный газовый закон (уравнение Клапейрона): pV/T =const; p1V1/T1 = p2V2/T2 где p –давление газа; V –объем; T – термодинамическая температура
Закон Бойля –Мариотта (изотермический процесс): pV = const; p1V1= p2V2 при T=const, m = const
Закон Гей-Люссака (изобарический процесс): V =V0(1 + αt) или V/T =const; V1/V2= T1/T 2 при p =const, m =const Закон Шарля (изохорический процесс): р= р0(1 + αt) или p/T =const; p1/p2 = T1/T2 при V =const, m =const, где t –температура по шкале Цельсия, V0, p0 –соответственно объем и давление при 00С, коэффициент α =1/273 К-1, p, V, T соответственно давление, объем и термодинамическая температура
Закон Дальтона для давления смеси n идеальных газов: p = , где pi - парциальное давление i -ой компоненты газа
Закон Авогадро: при Т0 = 00С =273 К, р0 =1 атм =1,013·105 Па мольный объем любого газа Vм =22,4 л ·моль-1 = 2,24·10-2 м3·моль-1

Пример 20. В двух баллонах имеются два газа: водород – Н2 и углекислый газ – СО2. Во сколько раз число молекул одного газа больше числа молекул другого газа, если массы газов одинаковы?

Условие:

М1 =2·10-3 кг/моль;

М2 =44·10-3 кг/моль;

N1/N2 -?

Решение. В одном моле вещества содержится число молекул, равное числу Авогадро N =6,02·1023 моль-1. Количество вещества водорода ν = m/M1, а в углекислом газе содержиттся число молей ν2 = m/M2. Тогда число молекул водорода N1 = ν1NA = mNA/M1, число молекул углекислого газа N2 = ν2NA = mNA/M2.

Разделив N1 на N2, получим ответ

N1/N2 = M2/M1 = 44/2 = 22

Пример 21. В баллоне объемом V = 10 л находится гелий под давлением р1 = 1 МПа и при температуре Т1 = 300 К. После того, как из баллона было взято m = 10 г гелия, температура в баллоне понизилась до Т2 = 290 К. Определить давление р2 гелия, оставшегося в баллоне, и изменение внутренней энергии газа.

Условие:

V = 10 л = 10-2 м3;

р1 = 1,0 МПа = 1,0·106 Па;

Т1 = 300 К;

m = 10 г = 1,0·10-2 кг;

Т2 = 290 К;

R = 8,314 Дж/кг·К;

М = 4·10-3 кг/моль;

р2 -? U -?

Решение. Воспользуемся уравнением Менделеева-Клапейрона, применив его к конечному состоянию газа:

р2V = m2RT2/M, (1)

где m2 – масса гелия в конечном состоянии;

М – молярная масса гелия;

R – универсальная газовая постоянная.

Из уравнения (1) выразим искомое давление

р2 = m2RT2/MV. (2)

Массу m2 гелия выразим через массу m1, соответствующую начальному состоянию, и массу m гелия, взятого из баллона:

m2 = m1 – m. (3)

Массу m1 гелия найдем также из уравнения Менделеева- Клапейрона, применив его к начальному состоянию:

m1 = Mp1V/RT1. (4)

Подставив выражение массы m1 в уравнение (2), а затем выражение m2 в уравнение (1), найдем

p2 = (Mp1V/RT1 – m)RT2/MV, (5)

.

Формула (5) дает единицу давления

[p] = К·Па/К – кг · Дж · К · моль/(кг · моль · м3·К) =

= Па – Дж/м3 = Па – Н·м/м3 = Па.

Вычисления

р2=290·106/300 – 1,0·10-2·8,314·290/(4·10-3·10-2) = 3,64·105 Па.

Внутренняя энергия газа в исходном состоянии

U1 = m1iRT1/2M.

Для газа, оставшегося в баллоне

U2 = m2 iRT2/2M.

Изменение энергии газа

U = U1 – U2 = R(m1 – m2) (T1 – T2)/M = Rm (T1 – T2)/M.

Проверка размерности: [U] = Дж·кг·К·моль/моль·К·кг = Дж.

Ответ: U = 208 Дж.


ЗАДАНИЕ 16. МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ИДЕАЛЬНОГО ГАЗА

16.1 Идеальный газ как модельная термодинамическая система. Статистические распределения

Основное уравнение молекулярно-кинетической теории газов: p = n0m<v2кв>/3; p = ρ<v2кв>/3; p =2n<ε>/3; <ε> = m<vкв2>/2, где <vкв > -средняя квадратичная скорость молекул; <ε> - средняя кинетическая энергия поступательного движения молекулы; n0 –концентрация молекул; m - масса одной молекулы; ρ - плотность газа
Закон Максвелла для распределения молекул идеального газа по скоростям: f(v) = dN(v)/Ndv = 4π (m0/2πkT)3/2v2exp [ - m0v2/2kT], где функция f(v) распределения молекул по скоростям определяет число молекул dN(v)/N из общего числа молекул, скорости которых лежат в интервале от v до v+dv
Барометрическая формула: p = p0 exp [ - Mg (h – h0)/RT]; p = p0exp[ - m0g(h – h0)/kT], где р и р0 – давление газа на высоте h u h0, M - молярная масса газа, m0 -масса молекулы, R - универсальная газовая постоянная, k - постоянная Больцмана Распределение Больцмана во внешнем центральном поле: n = n0 exp [ -Mgh/RT]; n = n0 exp [-m0gh/kT]; n = n0exp[- Wп/kT], где n, n0 -концентрация молекул на высоте h и h0=0; Wп - потенциальная энергия молекул в поле тяготения
Скорости молекул: наиболее вероятная: vb = (2RT/M)1/2 = (2kT/m0)1/2 = (2p/ρ)1/2 средняя квадратичная: <vкв> =(3RT/M)1/2= (3kT/ m0)1/2 =(3p/ρ)1/2 средняя арифмeтическая: <v> = (8RT/πM)1/2 =(8kT/πm0)1/2= (8p/πρ)1/2 где T - абсолютная температура газа; M - молярная масса газа; m0 – масса одной молекулы; p - давление газа; ρ – плотность газа; R – универсальная газовая постоянная; k – постоянная Больцмана
Средняя кинетическая энергия поступательного движения молекулы: k> =3kT/2. Средняя полная энергия молекулы: k> = ikT/2, где i- число степеней свободы молекул; k – постоянная Больцмана; T –термодинамическая температура одноатомный газ: i =3; двухатомный газ: i=5; многоатомный газ: i =6.
Зависимость давления газа от температуры: p = nkT

 

Пример 22. Температура окиси азота NO Т =300 К. Определить долю молекул, скорости которых лежат в интервале от v1 = 820 м/с до v2 = 830 м/с

Условие: Т = 300 К; v1 = 820 м/с; v2 = -830 м/c; ∆N /N -?

Решение. Рассматриваемый газ находится в равновесном состоянии, и согласно Максвеллу, относительное число молекул, скорость которых заключена в интервале от v до v + dv

ΔN/N = f (v, T)dv,

где f (v, T) – функция Максвелла;

dv – настолько малый диапазон скоростей, что в пределах его заведомо f (v, T) = const.

В условии задачи требуется определить долю молекул, скорости которых лежат в диапозоне ∆v = v2 – v1 = 10 м/с.

Если в этом пределе функцию Максвелла можно считать с достаточной точностью постоянной, то искомая величина может быть рассчитана по приближенной формуле

∆N/N = f (v1, N)∆v. (1)

Такое приближение соответствует тому, что на рис. 6 заштрихованная площадь приравнивается к площади прямоугольника с основанием v1 и высотой, равной значению f (v, T).

Следовательно, прежде всего надо найти значения функции Максвелла при v = v1 и v = v2 и выяснить, какую погрешность может дать использование равенства (1).

Функция Максвелла имеет вид

, (2)

где vв = (2kT/m0)1/2 = (2RT/M)1/2 - (3)

- наиболее вероятная скорость молекул

Для облегчения расчета найдем сначала наиболее вероятную скорость по равенству (3) vb = 410 м/с.

Тогда согласно (2)

f(v1,T) = 4,03·10-4 c/м f(v2, T) = 3,75·10-4 c/м.

Это означает, что при использовании выражения (23) допускается ошибка относительная величина которой

δf = [f(v1, T) – f (v2, T)]/f (v1, T) = 0,07 = 7%.

Следовательно, с указанной степенью точности можно использовать равенство (2). Тогда доля молекул, скорости которых лежат в заданном интервале

ΔN/N = f (v1, T)∆v = 4,0 ∙ 10-3 = 0,4%.

 





Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 401; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.058 сек.