Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение. Напряженность в центре кругового тока , (1)




Решение

Напряженность в центре кругового тока , (1)

Откуда радиус витка равен . (2)

К концам проволоки приложено напряжение (3)

где сопротивление проволоки равно

Подставив полученные значения R в (3), получим:

Пример 2. Заряженная частица движется в магнитном поле по окружности со скоростью V = 106 м/с. Индукция магнитного поля В =0,3 Тл. Радиус окружности R = 4 см. Найти заряд q частицы, если известно, что ее энергия W=12 кэВ.

Условие:

V=106 м/с

В = 0,3 Тл

R = 4 см = 0,04 м

W=12кэВ= 1,92.10-14Дж

q-?

В магнитном поле на частицу действует сила Лоренца:

Поскольку частица движется по окружности , то сила Лоренца сообщает частице ускорение . Следовательно (1)

Энергия частицы: , следовательно (2)

Подставляя (2) в (1), получим ,

Из этого уравнения найдем заряд частицы:

 

 


ТЕМА 12. РАБОТА В МАГНИТНОМ ПОЛЕ. ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ. ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ.

 

12.1. Поток вектора магнитной индукции (магнитный поток). Теорема Гаусса для поля

Элементарный магнитный поток сквозь площадку dS:
Магнитный поток сквозь произвольную поверхность S
Магнитный поток в однородном поле: где - угол между направлением вектора нормали к площадки и вектора Единица измерения магнитного потока – 1 Вб (вебер) =1 Тл.м2
Теорема Гаусса для поля : Поток вектора магнитной индукции сквозь произвольную замкнутую поверхность равен нулю:

 

12.2 Работа по перемещению проводника и контура с током в магнитном поле

Элементарная работа по перемещению проводника с током в магнитном поле:  
Работа по перемещению проводника с током в магнитном поле:
Работа по перемещению контура с током в магнитном поле где - потокосцепление, N- число витков контура.

 

12.3. Закон Фарадея (закон электромагнитной индукции). Правило Ленца.

 

Закон Фарадея ЭДС электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную контуром:
Правило Ленца: Индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшему этот индукционный ток
ЭДС индукции в неподвижных проводниках: , где - напряженность электрического поля индуцированного переменным магнитным полем
ЭДС индукции в проводнике длиной l, движущемся в однородном магнитном поле c постоянной скоростью : , где - угол между векторами и
ЭДС индукции, возникающая при вращении рамки в магнитном поле – модель генератора: где N и S – число витков и площадь рамки, В – индукция магнитного поля, - угловая скорость вращения рамки, - максимальное значение ЭДС

 

12.4. Индуктивность контура. Самоиндукция.

Сцепленный с контуром магнитный поток , где коэффициент пропорциональности L называется индуктивностью. Единица индуктивности – Гн (генри) =1 Ом.с
  ЭДС самоиндукции в контуре: Если контур не деформируется и магнитная проницаемость среды не меняется, то L=const и ЭДС самоиндукции
Индуктивность соленоида:

 

12.5 Токи при размыкании и замыкании цепи

Экстраток, возникающий при размыкании цепи: , где - время релаксации, за которое сила тока уменьшается в е раз
Экстраток при замыкании цепи: . где - установившийся ток (при

 

12.6. Взаимная индукция. Трансформатор

  Взаимная индукция - явление возникновения ЭДС в одном из контуров при изменении силы тока в другом Индуцируемая в контурах ЭДС
  Взаимная индуктивность двух катушек, намотанных на тороидальный сердечник:
Трансформатор – устройство для понижения или повышения напряжения переменного тока Коэффициент трансформации: k > 1 – трансформатор понижающий k < 1 – трансформатор повышающий Коэффициент полезного действия трансформатора:

 

12.7. Энергия магнитного поля.

Энергия магнитного поля контура с током:
Энергия магнитного поля соленоида , где V=Sl – объем соленоида.
Объемная плотность энергии магнитного поля:

 

12.8 Магнитные свойства вещества. Магнетики

Орбитальный магнитный момент электрона , где I=e , - частота вращения электрона по орбите, S – площадь орбиты, g – гиромагнитное отношение орбитальных моментов, е и m – заряд и масса электрона
Механический момент электрона:
Собственный механический момент электрона (спин):
Проекция на направление вектора может иметь одно из двух значений: где - магнетон Бора
Магнетик – вещество способное под действием магнитного поля приобретать магнитный момент (намагничиваться) диамагнетики: <1 парамагнетики: > 1 ферромагнетики: >> 1

 

12.9 Закон полного тока для магнитного поля в веществе. Циркуляция вектора

Теорема о циркуляции вектора : Циркуляция вектора магнитной индукции : по произвольному замкнутому контуру равна алгебраической сумме токов проводимости и молекулярных токов, охватываемых этим контуром. умноженной на магнитную постоянную:
Теорема о циркуляции вектора : , где

 

12.10 Условия на границе раздела двух магнетиков

Вблизи границы раздела двух магнетиков:

 

12.11Основы теории Максвелла для электромагнитного поля

 

Изменяющееся во времени магнитное поле порождает электрическое поле ЕВ циркуляция которого
Ток смещения: Плотность тока смещения: . где - вектор электрического смещения
Плотность тока смещения в диэлектрике: , где - плотность тока смещения в вакууме; - плотность тока поляризации.
Плотность полного тока:
Обобщенная теорема о циркуляции вектора :

 

12.13 Уравнения Максвелла для электромагнитного поля

Полная система уравнений Максвелла в интегральной форме: ; Величины, входящие в уравнение Максвелла, не являются независимыми и связаны так:
Полная система уравнений Максвелла в дифференциальной форме ;

 

12.14 Следствия из уравнений Максвелла Свойства электромагнитных волн.

Волновое уравнение . где - оператор Лапласа - фазовая скорость - скорость распространения электромагнитных волн в вакууме Векторы колеблются в одинаковых фазах, причем:
Объемная плотность энергии электромагнитных волн?
Вектор плотности потока энергии электромагнитной волны – вектор Пойнтинга:

 

Пример 17. В однородном магнитном поле. индукция которого В =0.8 Тл. равномерно вращается рамка с угловой скоростью =15 рад/с. Площадь рамки S = 150 см2. Ось вращения находится в плоскости рамки и составляет угол =300 с направлением магнитного поля. Найти максимальную ЭДС индукции во вращающейся рамке.

Условие:

В = 0,8 Тл

=15 рад/с

S= 150 cм2 =1,5.10-2 м2

=300

-?

Решение:

Мгновенное значение ЭДС индукции определяется законом Фарадея

(1)

При вращении рамки магнитный поток, охватывающий рамку, изменяется по закону:

(2)

подставив (2) в (1) и продифференцировав по времени, найдем мгновенное значение ЭДС индукции

Максимальное значение ЭДС достигнет при . Отсюда

 





Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 696; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.