Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема 4. Основное уравнение вращательного движения. Закон сохранения момента импульса




 

4.1 Динамика вращательного движения

Момент инерции материальной точки относительно оси вращения: J = mr2, где m –масса, r –расстояние до оси вращения. Момент инерции системы материальных точек (тела): J = , где ri – расстояние i –й материальной точки массой m до оси вращения. В случае непрерывного распределения масс: J = . Теорема Штейнера: момент инерции тела массой m относительно неподвижной оси вращения, не проходящей через центр масс и параллельный оси вращения: J = Jz + mr2, где Jz –момент инерции тела относительно оси z, проходящей через центр масс, r - расстояние между осями.

 

4.2. Момент инерции тел правильной геометрической формы относительно неподвижной оси вращения

Форма тела Ось вращения проходит через: Момент инерции
Однородный шар радиусом R и массой m центр масс 0,4mR2
Круглый однородный цилиндр или диск радиусом R и массой m центр масс перпендикулярно плоскости основания 0,5mR2
Тонкий обруч или кольцо радиусом R и массой m центр масс перпендикулярно плоскости обруча mR2
Однородный тонкий стержень длиной L и массой m центр масс стержня перпендикулярно стержню mL2/12
Однородный тонкий стержень длиной L и массой m конец стержня перпендикулярно стержню mL2/3

4.3 Момент силы, момент импульса. Основное уравнение динамики вращательного движения

Момент силы относитeльно произвольной точки: где – радиус-вектор, проведенный из этой точки в точку приложения силы . Модуль момента силы: M = Fl, где l = r.sin α – плечо силы (кратчайшее расстояние между линией действия силы и осью вращения)
Момент импульса твердого тела относительно оси вращения: где –радиус-вектор отдельной i - й частицы; mi - импульс этой частицы; J - момент инерции тела относительно оси; – угловая скорость
Основное уравнение (закон) динамики вращательного движения твердого тела относительно неподвижной оси: где ε – угловое ускорение; Jz -момент инерции тела относительно оси
Закон сохранения момента импульса для замкнутой системы
Работа при вращении тела: ΔA = MzΔφ где Δφ - угол поворота тела; Mz - момент силы относительно оси
Кинетическая энергия тела, вращающегося вокруг неподвижной оси: где J– момент инерции тела относительно оси, ω - угловая скорость Кинетическая энергия тела, катящегося по плоскости без скольжения: где m – масса тела; vc - скорость центра масс тела; J – момент инерции тела относительно оси, проходящей через центр масс; ω –угловая скорость тела

 

Пример 7. Маховик, массу которого m = 5 кг можно считать распределенной по ободу радиуса r = 20 см, свободно вращается вокруг горизонтальной оси, проходящей через его центр с частотой n = 720 мин-1. При торможении маховик останавливается через Δt = 20 с. Определить тормозящий момент М и число оборотов N, которое сделает маховик до полной остановки.

Условие:

m = 5 кг

r = 20см =0,20 м

n =720 мин-1 = 12 с-1

Δt =20 с

М -? N -?

Решение. Если тормозящий момент постоянен, то движение маховика равнозамедленное, и основное уравнение динамики вращательного движения можно записать в виде:

(1)

где - изменение угловой скорости за интервал времени ∆t; М – искомый тормозящий момент.

Число оборотов N может быть найдено как кинематически, так и по изменению кинетической энергии, равному работе совершаемой тормозящей силой.

Векторному уравнению (1) соответствует скалярное уравнение

J∆ω = M∆t, (2)

где ∆ω, M - модули соответствующих векторов.

Из условия задачи следует, что

∆ω = |ω – ω0 | = ω0 =2πn (3)

Поскольку масса маховика распределена по ободу, момент инерции

J = mr2 (4)

Подставляя выражения (2), (3) в (1) получим

mr22πn = M∆t.

Откуда M = 2πnmr2/Δt = 0,75 H.м.

Векторы направлены в сторону противоположную вектору .

Угловое перемещение, пройденное маховиком до остановки

φ = ω0∆t – ε∆t2/2. (5)

Учитывая, что ω = ωo - ε∆t = 0 преобразуем выражение (6)

φ = ω0∆t/2.

Так как φ = 2πN, ω =2πn, где N - число оборотов, которое делает маховик до полной остановки, окончательно получим

N = nt/2 = 120 об.


ТЕМА 5. МЕХАНИЧЕСКАЯ РАБОТА. МОЩНОСТЬ.

ЗАКОНЫ СОХРАНЕНИЯ ПРИ ПОСТУПАТЕЛЬНОМ ДВИЖЕНИИ

5.1 Закон сохранения импульса. Механическая работа, мощность, КПД.

Кинетическая и потенциальная энергия

Закон сохранения импульса для замкнутой системы: где n - число материальных точек (или тел), входящих в систему.
Элементарная работа, совершаемая постоянной силой: δA= δA = Frdr = Fdrcos α, где Fr -проекция силы на направление перемещения dr; α – угол между направлением силы и перемещения.
Работа, совершаемая переменной силой на пути: A = Работа силы тяжести вблизи поверхности Земли: A =mgh; Работа силы упругости: A =kx2/2. Работа силы трения: A = - Ft Δr. Мгновенная мощность: N =Fv =Frv = Fvcos α Коэффициент полезного действия (КПД): An, A3, Nn, N3 – соответственно полезные и затраченные работа и мощность
Кинетическая энергия:
Связь между консервативной силой, действующей на тело в данной точке, и потенциальной энергией частицы: = - grad Wп ; Потенциальная энергия частицы в поле центральных сил: Wп(r) = ΔA = - , предположив Wп(∞) = 0, получим Wп(r) = . Потенциальная энергия гравитационного взаимодействия двух материальных точек массами m1 и m2, находящихся на расстоянии r: Потенциальная энергия тела в поле силы тяжести Земли: где r = R +h - расстояние от центра Земли до центра масс тела. Потенциальная энергия тела в однородном поле силы тяжести (h<<R): Wп = mgh, где g – ускорение свободного падения. Потенциальная энергия упруго деформированного тела: где k - коэффициент жесткости, x – смещение; σ – нормальное напряжение; E – модуль Юнга; V – объем.

 

 

Пример 8. Автомобиль массой m = 2000 кг движется вверх по наклонной плоскости с уклоном α = 0,1, развивая на пути S = 100 м скорость vк = 36 км/ч. Коэффициент трения μ = 0,05. Найти среднюю и максимальную мощность двигателя автомобиля при разгоне.

Условие:

m =2000 кг;

S=100 м;

a=0,1 м/с2;

μ=0,05;

v0 =0;

vк =36км/ч = 10м/с;

Рср -? Рmax -?

 

Решение. Автомобиль движется равноускоренно, причем начальная скорость равна нулю. Выберем ось х, расположенную вдоль наклонной плоскости, ось у – перпендикулярно ей (рис. 3).

На автомобиль действует четыре силы: сила тяжести FТ =m g, сила реакции опоры N, сила тяги F и сила трения FТР. Запишем основной закон динамики:

.

Это уравнение в проекциях на оси координат

на ось х ma = F – mg sina - FTP,

на ось у 0 = N – mg cosa,

FTP = μ N.

Выразим из этих уравнений силу тяги F

F = mg sina + μmg cosa + ma.

Ускорение на этом участке равно:

a = (vk 2 - v02)/(2s) = vk2/(2s).

Найдем силу тяги двигателя на этом участке:

F = mg sinα + μmgcosα + = m(gsinα + μgcosα + )

Работа двигателя на этом участке: A = Fscosα,

где α – угол между F и s, равный нулю.

Подставив сюда выражение для F, получим

А = m(gsinα + μgcosα + )s

Средняя мощность равна PCP = , где , откуда

Максимальная мощность автомобиля достигается в тот момент, когда скорость максимальна: Pmax = F·vk,

Pср = 27·104 Вт, Pmax = 47·104 Вт.





Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 606; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.