Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свойства выборочного среднего




Понятие средневыборочного значения и математического ожидания случайной величины.

Требования, предъявляемые к выборке.

 

К генеральной совокупности обычно применимо требование правильного определения ее КОНТУРА. Это означает, что исследователь обязан ответить на два вопроса: охватывает ли он в своих предположениях все возможные элементы генеральной совокупности, и нет ли элементов избыточных, лишних.

 

Вы́борочное (эмпири́ческое) сре́днее — это приближение теоретического среднего распределения, основанное на выборке из него.

Пусть — выборка из распределения вероятности, определённая на некотором вероятностном пространстве . Тогда её выборочным средним называется случайная величина

.

Пусть — выборочная функция распределения данной выборки. Тогда для любого фиксированного функция является (неслучайной) функцией дискретного распределения. Тогда математическое ожидание этого распределения равно .

Выборочное среднее — несмещённая оценка теоретического среднего:

.

Выборочное среднее — сильно состоятельная оценка теоретического среднего:

почти наверное при .

Выборочное среднее — асимптотически нормальная оценка. Пусть дисперсия случайных величин конечна и ненулевая, то есть . Тогда

по распределению при ,

где — нормальное распределение со средним и дисперсией .

Выборочное среднее из нормальной выборки — эффективная оценка её среднего.

 

7. Характеристики разброса в выборках: размах, дисперсия, среднеквадратичное отклонение.

1)Размах- разность между последним и первым членом выборки:

∆X=Xm-X1

2) Выборочная дисперсия- среднее арифметическое квадратов отклонения вариант от их среднего значения:

k _

Dв=1/n ∑ (xi – xв)2

i=1

3)Среднеквадратичное откланение- квадратный корень из выборочной дисперсии:

σ= корень из D

 




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 3056; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.