КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Формула полной вероятности
Вероятность появления только одного события
Пример 4. Пусть даны три независимых события
¦ Пусть: событие
событие
событие
Таким образом, чтобы найти вероятность появления только одного из событий
События Обозначим Тогда
Пусть некоторое событие
Теорема. Вероятность события
Пример 5. В двух ящиках содержатся по 20 деталей, причем в первом 17 стандартных деталей, а во втором 15 стандартных деталей. Из второго ящика наудачу извлечена одна деталь и переложена в первый ящик. Найти вероятность того, что наудачу извлеченная деталь из первого ящика, окажется стандартной.
¦ Опыт можно разбить на два этапа: первый - перекладывание детали, второй - выбор детали.
Гипотезы:
Пример 6. Один из трех стрелков производит два выстрела. Вероятность попадания в цель при одном выстреле для первого стрелка равна 0,4, для второго – 0,6, для третьего – 0,8. Найти вероятность того, что в цель попадут два раза. m Вероятность того, что выстрелы производит первый, второй или третий стрелок равна Вероятности того, что один из стрелков, производящих выстрелы, два раза попадает в цель, равны:
- для первого стрелка: - для второго стрелка: - для третьего стрелка:
Искомая вероятность равна:
Формула Байеса (формула гипотез) Пусть имеется полная группа несовместных гипотез Требуется определить какие вероятности имеют гипотезы
Теорема. Вероятность гипотезы после испытания равна произведению вероятности гипотезы до испытания на соответствующую ей условную вероятность события, которое произошло при испытании, деленному на полную вероятность этого события.
Эта формула называется формулой Байеса.
Пример 7. Детали, изготовляемые цехом завода, попадают для проверки их на стандартность к одному из двух контролеров. Вероятность того, что деталь попадет к первому контролеру равна 0,6, ко второму равна 0,4. Вероятность того, что деталь будет признана стандартной первым контролером равна 0,94, а вторым – 0,98. Годная деталь при проверке была признана стандартной. Найти вероятность того, что ее проверил первый контролер.
¦ Гипотезы:
Событие
Как видно до испытания
Дата добавления: 2014-11-20; Просмотров: 1665; Нарушение авторских прав?; Мы поможем в написании вашей работы! |