КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Тема 6. Кривые и поверхности второго порядка
Тема 5. Прямые линии и плоскости. Тема 4. Векторная алгебра. Тема 3. Системы линейных уравнений. Тема 2. Матрицы. Тема 1. Определители. Содержание дисциплины (наименование и номера тем). Содержание и структура дисциплины. Раздел I. ЛИНЕЙНАЯ АЛГЕБРА. Определители 2-ого, 3-его, порядков, порядка n. Свойства определителей. Миноры и алгебраические дополнения. Разложение определителя по элементам строки или столбца. Вычисление определителей. Литература: [1] –C.142-154; [2] – C.22-26; [3] – C.20-24; [4] – C.263-268.
Определение матрицы. Виды матриц. Действия над матрицами. Базисный минор. Ранг матрицы. Обратная матрица, условие существования, основные способы её нахождения. Матричные уравнения, их решение. Литература: [1] –C.136-142; 159-165;174-182; [2] – C.9-16; 26-29; [3] – C.16-20; 24-28; [4] – C.259-263; 272-276.
Системы линейных уравнений (СЛУ). Основные понятия и определения. Матричная запись СЛУ. Теорема Кронеккера-Капелли. Формулы Крамера. Решение СЛУ методом обратной матрицы. Решение СЛУ методом Гаусса. Однородные системы линейных уравнений, свойства их решений. Литература: [1] –C.136-142; 154-159; 165-174; [2] – C.38-53; [3] – C.29-38; [4] – C.268-276.
Раздел II. ВЕКТОРНАЯ АЛГЕБРА Геометрические векторы на прямой, плоскости и в пространстве, линейные операции над ними. Линейная комбинация векторов. Линейно зависимая и линейно независимая система векторов. Базис плоскости, пространства. Системы координат на плоскости и в пространстве, координаты вектора. Линейные операции над векторами в координатной форме. Проекция вектора. Прямоугольная декартова система координат. Радиус-вектор. Длина и направляющие косинусы вектора. Расстояние между точками. Деление отрезка в данном отношении. Скалярное, векторное, смешанное произведения векторов, их свойства, выражение в координатной форме, приложения для решения геометрических задач. Условия перпендикулярности, параллельности и компланарности векторов. Литература: [1] –C.5-37; [2] – C.63-68; [3] – C.39-57; [4] – C.222-241. Раздел III. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Прямая на плоскости. Различные виды уравнений прямой на плоскости. Расстояние от точки до прямой. Угол между двумя прямыми. Условия параллельности и перпендикулярности двух прямых. Плоскость. Различные виды уравнений плоскости. Взаимное расположение 2-ух плоскостей. Расстояние от точки до плоскости. Прямая в пространстве. Различные виды уравнений прямой в пространстве. Взаимное расположение 2-ух прямых в пространстве. Взаимное расположение прямой и плоскости Литература: [1] –C.45-71; [2] – C.95-104; 119-121; [3] – C.68-74; 92-104; [4] – C.34-52; 244-252.
Кривые 2-ого порядка на плоскости: окружность, эллипс, гипербола, парабола, их определения, канонические уравнения, форма. Приведение общего уравнения кривой 2-ого порядка к каноническому виду и построение. Поверхности 2-ого порядка, их канонические уравнения и форма. Метод сечения при исследовании формы поверхности.
Литература: [1] –C.72-110; [2] – C.104-115; [3] – C.74-89; 104-115; [4] – C.52-69; 252-259. Раздел IV. ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ.
Дата добавления: 2014-12-08; Просмотров: 462; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |