Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Упругие волны в твердом теле




Пусть имеется однородный стержень. Направим ось Х вдоль стержня и выберем два сечения стержня, координаты которых (рис.6.2) равны х1 и х 2 соответственно так, что между ними оказывается отрезок стержня длиной l 0 = x2 - x1= Dх. Под действием вне-шних сил в стержне произойдут упругие деформации, так что в новом - деформированном состоянии- выбранные сечения имеют координаты (х1+x1) и (х2+x2 ), т.е. первое сечение сместилось на величину x1, а второе- на x2. Длина выбранного отрезка теперь равна (х2+x2) - (х1+x1)= l 0 +(x2- x1) = l 0 + D l, поэтому величина относительной деформации отрезка равна:

e = = . (6-4)


Чтобы написать уравнение движения для выделенного отрезка стержня необходимо вычислить вторую производную смещения по времени. Как видно из выражения (6-1), выражение для распространяющейся волны зависит от двух переменных, поэтому вычисление производной от функции f (x,t) должно происходить несколько иначе, чем в случае одной переменной. Производную от функции f (x,t) по одной из двух переменных можно вычислять так же, как и в случае функции одной переменной, считая вторую переменную при этом постоянной, но эта производная называется частной производной. Например, если f(x,y)= x5 y 5, то x4 y5, x5 y4 (здесь и далее наклонные ¶ означают знак частной производной).

С учетом этого для бесконечно малого отрезка величина относительной деформации получается формальным предельным переходом к бесконечно малым величинам. Тогда уравнение (9-10) приобретает такой вид:

e = (6-5)

Если по стержню распространяется продольная упругая волна, то в нем действуют попеременно внутренние силы растяжения и сжатия. Выбирая длину отрезка достаточно малой можно добиться, чтобы на его концы действовали одинаковые силы - сжатия или растяжения. Пусть для определенности это будут силы растяжения f1 и f2 (рис.6.2). Второй закон Ньютона для элемента длины Dх можно написать, используя теорему о движении центра масс:

D . (6-6)

Силы упругого растяжения представляем с помощью закона Гука:

e = , (6-7)

где Е - модуль упругости модуль Юнга), S - площадь сечения стержня, а - величина относительной деформации. Величина s = f/S называется упругим напряжением; масса Dm = rSDx, где r - плотность стержня. Если смещение центра масс xц.м., то уравнение (6-6) становится таким:

rSDx .

Деля обе части последнего равенства на на величину объема SDx, получаем:

.
При переходе к бесконечно малым величинам последнее уравнение становится уравнением для производных:

. (6-8)

Правую часть (6-8) выразим через закон Гука (6-7), переходя к бесконечно малым элементам:

s = eЕ = Е ; .

 

С учетом последнего соотношения из (6-8) получаем:

. (6-9)

Соотношение (6-9) называется волновым уравнением. Хотя оно получено для частного случая продольных упругих волн, оно имеет достаточно общий вид. Его можно получить сравнением вторых производных любой функции по координате и времени соответственно, если эта функция зависит от аргумента вида a = t - . Опуская математические действия, получим

= ,

откуда следует, что скорость распространения продольных упругих волн равна:

 

.

Таким образом, решением волнового уравнения являются функции от аргумента a=t- . Эти функции характеризуют плоскую волну, распространяющуюся вдоль оси х.

 




Поделиться с друзьями:


Дата добавления: 2014-12-10; Просмотров: 773; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.