Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дифференциальные уравнения движения механической системы




Рассмотрим механическую систему, состоящую из материальных точек. Для каждой точки системы в инерциальной системе отсчета справедлив второй закон Ньютона:

 

(3.1)

где

– масса точки с номером ;

– ее радиус–вектор;

– равнодействующая всех внешних сил как активных, так и реакций связей, действующих на точку с номером ;

– равнодействующая всех внутренних сил, действующих на точку с номером .

Систему уравнений (3.1) называют системой дифференциальных уравнений движения точек механической системы. Одна из основных задач механики состоит в том, чтобы, зная активные силы и связи, наложенные на систему, определить движение всех точек системы и определить реакции связей. Решение такой задачи связано с интегрированием системы уравнений (3.1) при заданных начальных условиях. Однако, прямое интегрирование системы (3.1) весьма сложно, что связано как с возможно большим числом этих уравнений, так и, в основном, с неопределенностью информации о внутренних силах.

Во многих практически интересных случаях нет необходимости определять все интегралы системы (3.1), достаточно получить лишь некоторые из них. Это позволяют сделать общие теоремы динамики. Являясь прямым следствием уравнений (3.1), общие теоремы динамики связывают основные динамические величины, характеризующие движение системы, с приложенными к ней внешними силами.

 




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 422; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.