КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Принцип возможных перемещений. Принцип возможных перемещений устанавливает условия равновесия механических систем
ЛЕКЦИЯ 8
Принцип возможных перемещений устанавливает условия равновесия механических систем. Под равновесием механической системы традиционно понимают состояние ее покоя по отношению к выбранной инерциальной системе отсчета. Рассмотрим механическую систему, состоящую из материальных точек. Для ее равновесия необходимо и достаточно, чтобы суммы всех сил, действующих на каждую точку системы, и скорости всех точек в начальный момент времени равнялись нулю:
(8.1) где – равнодействующая всех активных сил, действующих на точку с номером ; – равнодействующая всех сил реакций связей, наложенных на точку с номером .
Для равновесия механической системы с идеальными удерживающими стационарными связями необходимо и достаточно, чтобы сумма элементарных работ всех приложенных к системе активных сил на любом возможном перемещении системы равнялась нулю и скорости всех точек в начальный момент времени равнялись нулю: (8.2)
Сформулированное утверждение называют принципом возможных перемещений. Необходимость. Пусть механическая система находится в равновесии. Следовательно, выполняются условия (8.1). Из данного положения дадим системе возможное перемещение. Умножим каждое из уравнений (8.1) скалярно на соответствующее точке возможное перемещение и сложим все полученные уравнения:
(8.3) По условию связи идеальные, следовательно, справедливо равенство (7.1). Из (8.6) и (8.3) получаем (8.2). Достаточность. Приложим к точкам покоящейся механической системы систему сил, удовлетворяющих равенству (8.2) и, следовательно, поскольку связи идеальные (7.1), равенству (8.4) Покажем, что механическая система останется в покое. Допустим противное – система под действием приложенных сил пришла в движение, т.е. ее точки получили ускорения . Эти ускорения должны быть направлены по касательным к траекториям точек, поскольку скорости равны нулю и нормальные составляющие ускорений отсутствуют. Таким образом, действительные перемещения точек пропорциональны их ускорениям. По условию связи стационарные и, следовательно, среди возможных перемещений системы найдется такое, которое совпадает с действительным. Возьмем в качестве возможного перемещения систему векторов, пропорциональных ускорениям точек . Равенство (8.4) примет вид: или, учитывая, что для каждой точки справедлив второй закон Ньютона, Это равенство может иметь место только в том случае, если ускорения всех точек равны нулю Следовательно, механическая система после приложения активных сил останется в покое. Заметим, что если вместо возможных перемещений использовать пропорциональные им возможные скорости (что позволяет в полной мере использовать при решении задач кинематические методы), то условия равновесия записываются в виде:
(8.5) т.е.
Дата добавления: 2014-12-16; Просмотров: 562; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |