Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Клонирование организмов и клеток. 1 страница




 

Клеточная инженерия. Понятие о клонировании. Природные и искусственные клоны. История клонирования организмов. Биологические и этичные проблемы клонирования. Терапевтическое клонирование и его перспективы в медицине.

 

Клеточная инженерия. Понятие о клонировании. Термин «клон» происходит от греческого слова «klon», что означает веточка, побег, отпрыск и имеет отношение, прежде всего к вегетативному размножению. Строго говоря, даже вегетативное размножение микроорганизмов делением можно назвать клонированием.

Клонированию можно давать много определений. Вот некоторые самые распространенные из них: клонирование - популяция клеток или организмов произошедших от общего предка путём бесполого размножения, причём потомок при этом генетически идентичен своему предку. Воспроизводство организмов полностью повторяющих особь, возможно только в том случае, если генетическая информация матери будет без каких-либо изменений передана дочерям. Но при естественном половом размножении этому препятствует мейоз. В ходе мейоза незрелая яйцеклетка, имеющая двойной, или диплоидный набор хромосом - носителей наследственной информации - делиться дважды и в результате образуются четыре гаплоидных, с одинарным набором хромосом, клетки. Три из них дегенерируют, а четвёртая с большим запасом питательных веществ, становится яйцеклеткой. У многих животных она в силу гаплоидности не может развиваться в новый организм. Для этого необходимо оплодотворение. Организм, развившийся из оплодотворенной яйцеклетки, приобретает признаки, которые определяются взаимодействием материнской и отцовской наследственности. Следовательно, при половом размножении мать не может быть повторена в потомстве.

Как же вопреки этой строгой закономерности заставить клетку развиваться только с материнским диплоидным набором хромосом? Теоретически решение этой трудной биологической проблемы найдено.

Природные и искусственные клоны. В природе всё-таки имеются случаи клонирования человека, это однояйцовые или монозиготные близнецы - настоящие клоны с одним и тем же геномом, возникающие при разделении одной зиготы на ранней стадии развития. Это всегда только оба мальчика или обе девочки и всегда удивительно похожие друг на друга. Известно также, что эмбрион млекопитающего, в том числе и человека на самых ранних стадиях развития, у человека, по крайней мере, до стадии 8 бластомеров, может быть без видимых отрицательных последствий разделён на отдельные бластомеры. Из них при определённых условиях могут развиться идентичные по своему генотипу особи, по аналогии с однояйцовыми близнецами, то есть из одного 8-клеточного эмбриона могут родиться 8 мальчиков или девочек абсолютно идентичных.

В природе широко распространено клонирование растений. Прежде всего, это относится к вегетативному размножению, что давно используется человеком. Дело в том, что у растений в отличие от животных по мере их роста, в ходе клеточной специализации - дифференцировки - клетки не теряют так называемые тотипотентные свойства, то есть, не теряют своей способности реализовывать всю генетическую информацию, заложенную в ядре. Поэтому практически любая растительная клетка, сохранившая в процессе дифференцировки своё ядро, может дать начало новому организму. Эта особенность растительных клеток лежит в основе многих методов генетики и селекции.

При вегетативном размножении и при клонировании гены не распределяются по потокам, как в случае полового размножения, а сохраняются в полном составе в течение многих поколений. Всё организмы, входящие в состав определённого клона имеют одинаковый набор генов и фенотипически не различаются между собой.

Клетки животных, дифференцируясь, лишаются тотипотентности, и в этом, одно из существенных отличий от клеток растений. Как будет показано ниже именно здесь главное препятствие для клонирования взрослых позвоночных животных.

История клонирования организмов. Клонирование растений черенками, почками или клубнями в сельском хозяйстве, в частности в садоводстве, известно уже более 4-х тыс. лет. Начиная с 70-х годов нашего столетия, для клонирования растений стали широко использовать небольшие группы, и даже отдельные соматические клетки. Гораздо большую сложность представляет клонирование животных. Первые шаги к клонированию животных были предприняты около ста лет назад зоологом Московского Университета Александром Тихомировым, открывшим на примере тутового шелкопряда партеногенез: развитие без оплодотворения в результате химических и физических воздействий. Однако партеногенетические эмбрионы шелкопряда были нежизнеспособны.

В 30-е годы минувшего века академиком Б. Астауровым проводилась серия исследований, в результате которых было подобрано термическое воздействие, способное одновременно активировать неоплодотворенное яйцо к развитию и блокировать процесс превращения ядра яйцеклетки с двойным хромосомным набором в ядро с одинарным набором. Таким образом, были получены первые генетические копии. Увы, и такое потомство отличалось низкой жизнеспособностью. В дальнейшем этот метод был усовершенствован академиком В. Струнниковым, работы которого по клонированию шелкопряда получили в итоге мировую известность.

История клонирования позвоночных начинается в 40-е годы 20-го века, когда российский эмбриолог профессор, Г. Лопашов на лягушках разработал метод пересадки ядер, на котором основаны все современные эксперименты по клонированию. Метод состоит в выделении ядра соматической клетки и имплантации его в обезъядренную (энуклеированную) яйцеклетку. Статья, написанная по материалам этих экспериментов, была отправлена в «Журнал общей биологии» в августе 1948 года. Однако света она так и не увидела вследствие состоявшейся месяцем позже сессии ВАСХНИЛ, приведшей к беспредельному господству «лысенковщины» в биологии. Через несколько лет, в начале 50-х уже американские эмбриологи Кинг и Бриггс провели опыты, подобные экспериментам Лопашова, и «переоткрыли» метод, чем и прославились.

Впервые возможность клонирования эмбрионов позвоночных была продемонстрирована американскими биологами на лягушках в начале 50-х годов. Затем в 1962 году зоолог Оксфордского университета Дж. Гердон существенно продвинул эти результаты, когда в опытах с южноафриканскими жабами стал использовать в качестве донора ядер не зародышевые клетки, а уже вполне специализировавшиеся клетки эпителия кишечника подросшего головастика. Выживало не более двух процентов клонированного потомства, да и у выживших наблюдались различные дефекты. Однако это был огромный шаг вперед по пути клонирования.

Перейти от амфибий к млекопитающим оказалось весьма трудно, главным образом по той причине, что размеры яйцеклетки у млекопитающих примерно в тысячу раз меньше, чем у земноводных. Но к концу 70-х эти трудности удалось преодолеть, так что к началу 80-х были освоены эксперименты по клонированию эмбрионов мышей, а к концу десятилетия ученые стали получать важные результаты на эмбрионах кроликов и крупных домашних животных. Вплоть до середины 90-х годов вопрос об использовании взрослых млекопитающих в качестве доноров ядер клеток практически не ставился, поскольку ученые-биологи занимались главным образом клонированием эмбрионов домашних животных, причем эксперименты в этой области и по сию пору проходят весьма непросто и с высоким уровнем неудач. Поэтому поистине сенсацией стала история с клонированием в 1996 году знаменитой ныне овечки Долли в шотландской фирме PPL Therapeutics (коммерческого отделения Розлин Института в Эдинбурге). Коллектив ученых, возглавляемый Иэном Уилмутом, продемонстрировал, что им удалось, используя соматические клетки взрослого животного, получить клональное животное - овцу по кличке Долли. Однако этому предшествовала большая работа.

Ещё в 1986 году Уиландсин показал, что эмбрионы овец на 16-клеточной стадии развития сохраняют тотипотентность. Реконструированные яйцеклетки, содержащие ядра бластомеров 16-клеточных зародышей, развивались нормально до стадии бластулы в перевязанном яйцеводе овцы (в агаровом цилиндре), а после освобождения от агара, пересаживали в матку овцы- второго реципиента - ещё на 60 дней. В другом случае донорами служили ядра 8-клеточных зародышей и были получены три живых ягнёнка, фенотип которых соответствовал породе овцы- донора.

В 1989 году Смит и Уилмут трансплантировали ядра клеток 16-клеточного эмбриона и ранней бластулы в лишённые ядра неоплодотворенной яйцеклетки овец. В первом случае было получено два живых ягнёнка, фенотип которых соответствовал породе овец - доноров ядер. Во втором случае один полностью сформировавшийся ягнёнок погиб во время родов. Его фенотип также соответствовал породе-донору. Авторы считали, что в ходе дифференцировки эмбриональных клеток происходит инактивация некоторых важных для развития генов и в результате ядра бластулы уже не могут репрограммироваться в цитоплазме яйцеклетки и обеспечить нормальное развитие реконструированного зародыша. Поэтому, по мнению авторов, в качестве доноров ядер лучше использовать 16-клеточные эмбрионы или культивированные in vitro линии эмбриональных клеток, ядра которых обладают тотипотентностью.

Позднее, в 1993-95 гг., группа исследователей под руководством Уилмута получила клон овец - пять идентичных животных, донорами ядер которых была культура эмбриональных клеток. Клеточную культуру получали следующим образом: выделяли микрохирургическим путём эмбриональный диск из 9-дневного овечьего эмбриона (бластулы) и культивировали клетки in vitro в течение многих пассажей (по крайней мере, до 25). Сначала клеточная культура напоминала культуру стволовых дифференцированных эмбриональных клеток, но вскоре, после 2-3 пассажей, клетки становились уплотнёнными и морфологически сходными с эпителиальными. Эта линия клеток из 9-дневного зародыша овцы была обозначена как TNT4.

Чтобы донорское ядро и реципиентная цитоплазма находилась на сходных стадиях клеточного цикла, останавливали деление культивируемых клеток TNT4 на определённой стадии (G0) и ядра этих клеток пересаживали в энуклеированные яйцеклетки (соответственно на стадии метафазы II). Реконструированные эмбрионы заключали в агар и трансплантировали в перевязанные яйцеводы овец. Через шесть дней эмбрионы вымывали из яйцеводов промежуточных реципиентов и исследовали под микроскопом. Отбирали те, которые достигали стадии морулы и бластулы и пересаживали их в матку овцы - окончательного реципиента, где развитие продолжалось до рождения. Родилось пять ягнят (самок), из них две погибли вскоре после рождения, третья в возрасте десяти дней, а две оставшихся нормально развивались и достигли 8-9-месячного возраста. Фенотипически все ягнята были сходны с породой овец, от которой получали исходную линию клеток TNT4. Это подтвердил и генетический анализ.

Эта работа, особенно в части культуры эмбриональных клеток, значительное достижение в клонировании млекопитающих. Хотя она и не вызвала особого интереса, как статья того же Уилмута с соавторами, опубликованная в 1997 году, где сообщалось, что в результате использования донорского ядра клетки молочной железы овцы было получено клональное животное - овца по кличке Долли. Последняя работа методически во многом повторяла предыдущие исследования 1996 года, но в ней учёные использовали не только эмбриональные, но ещё и фибробластоподобные клетки (фибробласты - клетки соединительной ткани) плода и клетки молочной железы взрослой овцы. Клетки молочной железы получали от 6-летней овцы породы Финн Дорсет, находящейся на последнем триместре беременности. Все три типа клеточных культур имели одинаковое число хромосом - 54, как обычно у овец. Эмбриональные клетки использовали в качестве доноров ядер на 7-9 пассажах культивирования, фибробластоподобные клетки плода на 4-6 пассажах и клетки молочной железы на 3-6 пассажах. Деление клеток всех трёх типов останавливали на стадии G0 и ядра клеток пересаживали в энуклеированные ооциты (яйцеклетки) на стадии метафазы II. Большинство реконструированных эмбрионов сначала культивировали в перевязанном яйцеводе овцы, но некоторые эмбрионы культивировали in vitro в химически определённой среде. Коэффициент выхода морул и бластул при культивировании in vitro в одной серии опытов был даже вдвое выше, чем при культивировании в яйцеводе (поэтому видимо, нет строгой необходимости в промежуточном реципиенте и можно обойтись культивированием in vitro).

Выход морул и бластул в серии опытов с культурой клеток молочной железы, был примерно втрое меньше, чем в двух других сериях, когда в качестве доноров ядер использовали фибробластов плода или эмбриональных клеток. Число живых ягнят в сравнении с числом пересаженных в матку окончательного реципиента морул или бластул было также в два раза ниже. В серии опытов с клетками молочной железы и 277 реконструированных яйцеклеток был получен только один живой ягнёнок, что говорит об очень низкой результативности такого рода экспериментов (0,36%). Анализ генетических маркеров всех семи родившихся в трёх сериях экспериментов живых ягнят показал, что клетки молочной железы были донорами ядер для одного, фибробласты плода - для двух и эмбриональные клетки для четырёх ягнят. Овца Долли развилась из реконструированной яйцеклетки, донором ядра которой была культивируемая клетка молочной железы овцы породы Финн Дорсет. Долли фенотипически не отличается от овец этой породы, но сильно отличается от овцы-реципиента породы шотландская черномордая. Анализ генетических маркеров подтвердил этот результат.

Относительный успех (Долли умерла от преждевременного старения) авторов этой работы, прежде всего, связан с использованием длительных клеточных культур, так как после многих пассажей в культуре клеток могли быть отобраны малодифференцированные стволовые клетки, которые вероятно и были использованы как доноры ядер. Большое значение имел также тот факт, что авторы, учитывая результат своих прошлых работ, синхронизировали стадии клеточного цикла яйцеклеток реципиента и яйцеклеток донора.

Своей работой Уилмут с коллегами продемонстрировали, что ядра клеток молочной железы взрослой овцы могут быть при определённых условиях репрограммированы цитоплазмой ооцита и дать развитие новому организму. Полученные данные заставили по-новому посмотреть на процесс клеточной дифференцировки. Этот процесс, как оказалось, не носит необратимый характер. Совершенно ясно, что цитоплазматические факторы способны инициировать развитие нового организма на основе генетического материала ядра взрослой полностью дифференцированной клетки. Таким образом, биологические часы могут быть повёрнуты вспять, и развитие организма может начаться из генетического материала взрослой дифференцированной клетки, что полностью противоречит ранее общепринятой биологической догме.

Если результаты последней работы Уилмута и соавторов окончательно подтвердятся и будет повышен коэффициент выхода живых животных при использовании в качестве доноров ядер клеток взрослых животных, то это может иметь революционное значение в биотехнологии животных и животноводстве. Клонирование позволит сохранить не только генотип ценных и выдающихся в производственном отношении животных, но и безгранично размножать их.

Клонирование высокопродуктивных домашних животных, в частности, молочных коров, может произвести буквально революцию в сельском хозяйстве, так как только этим методом можно создать не отдельные экземпляры, а целые стада элитных коров рекордисток. Это же относится к размножению выдающихся спортивных лошадей, ценных пушных зверей, сохранению редких и исчезающих животных в природных популяциях и т.д.

Беспрецедентный по своему масштабу эксперимент по массовому клонированию крупного рогатого скота недавно начался в Китае. Как сообщает местная печать, в Синьцзян-Уйгурском автономном районе на северо-западе страны ожидается появление от 20 до 50 клонированных телят. Проект ведется компанией «Цзиньню» и является крупнейшим в своем роде в мире. В нем также участвуют Австралия, Канада, США и Великобритания и ряд других стран. Китайские ученые полагают, что клонирование станет важным шагом в развитии животноводства и улучшении племенной работы.

Внедрение в практику методов межвидового переноса ядер может открыть невиданные перспективы для спасения находящихся на грани исчезновения видов животных. Как показали работы Т. Доминко и соавт. в 1999 г., энуклеированные ооциты крупного рогатого скота после электрослияния с ядрами кожных фибробластов быков (Bos taurus), овец (Ovis aries), свиней (Sus scrofa), обезьян (Масаса fascicularis) и крыс (Rattus rattus) могут поддерживать развитие эмбрионов до ранних стадий (в некоторых случаях до стадий бластоцисты). В других исследованиях было зафиксировано, что энуклеированные яйцеклетки крупного рогатого скота обеспечивают реализацию генетического материала донорских ядер из соматических клеток человека даже до более продвинутых эмбриональных стадий. Это является свидетельством того, что даже перенос ядер в ооциты далеких в эволюционном отношении видов обеспечивает их частичное репрограммирование. А может ли быть так, что трансплантация ядер в энуклеированные яйцеклетки близких видов приведет к получению полноценного здорового потомства? В конце 2000 - начале 2001 г. весь научный мир следил за попыткой исследователей из американской фирмы «ACT» клонировать вымирающий вид буйволов Bos gaurus (гяур), который распространен на территории Индии и Юго-Западной Азии. Соматические клетки-доноры ядер (кожные фибробласты) были получены в результате биопсии post mortem от быка в возрасте 5 лет и после двух пассажей в культуре длительное время (8 лет) хранились в криоконсервированном состоянии в жидком азоте. Всего было получено четыре беременности. Чтобы подтвердить генетическое происхождение плодов, два из них были выборочно изъяты. Цитогенетический анализ подтвердил наличие в клетках характерного для гяуров нормального кариотипа, однако выяснилось, что вся митохондриальная ДНК происходит от коров-доноров яйцеклеток (Bos taurus).

Как известно, митохондрии являются «энергетическими станциями» клеток, именно в них происходит синтез АТФ, соединения с гиперергическими связями, при разрушении которых выделяется большое количество энергии, используемой в процессах жизнеобеспечения клетки. Активность митохондрий регулируется как собственным генетическим аппаратом - генами, закодированными в митохондриальной ДНК, так и генами, локализованными в ядре клетки. Общее количество митохондриальной ДНК (мДНК) в соматической клетке насчитывает 20 000-30 000 молекул в отличие от яйцеклетки млекопитающего, в которой содержится около 100 000 молекул мДНК. Такое явление, когда в цитоплазме клетки находится более одного типа мДНК, называется митохондриальной гетероплазмией. Митохондриальная ДНК наследуется по материнской линии вместе с цитоплазмой ооцита, поэтому получаемые в результате клонирования животные не являются стопроцентными клонами, потому что несут митохондрии донора ядер и индивидуумов-доноров реципиентных энуклеированных яйцеклеток, и обладают, таким образом, митохондриальной гетероплазмией. Взаимодействие между ядерной ДНК и чужеродной мДНК требует дальнейшего изучения. Весьма вероятно, что митохондриальная гетероплазмия может приводить к дисбалансу в энергетическом обмене клетки и служить причиной серьезных нарушений. К сожалению, в опыте американских ученых одна из беременностей прервалась на 200-дневном сроке, а в результате другой родился теленок, который умер спустя 48 ч. Представителями фирмы было заявлено, что это произошло «по причине инфекционного клостридиозного энтерита, не имеющего отношения к клонированию».

Предпринимаются и другие попытки клонирования с целью спасения исчезающих видов. Так, 11 коров с фермы в штате Айова уже вынашивают клоны младенцев бантенгов - исчезающую разновидность диких азиатских быков. Китайские ученые из Института зоологических исследований, намеренных клонировать исчезающих вид гигантских панд. Их индийские коллеги собираются аналогичным способом восстановить популяцию гепардов, окончательно истребленных охотниками в первой половине прошлого века, еще во времена правления Британской империи. Донорами яйцеклеток для клонированных животных станут гепарды из соседнего Ирана, принадлежащие к тому же виду, что и звери, прежде обитавшие на полуострове Индостан, а суррогатными матерями, в которых будут развиваться пересаженные яйцеклетки - самки индийского леопарда.

Клонирование растений значительно проще, чем клонирование животных. Мы рассмотрим только сравнительно новую технологию выращивания растений из изолированных групп клеток и отдельных соматических клеток.

Для клонирования достаточно растительную клетку изолировать из целого растения и поместить на питательную среду, содержащую солевые компоненты, витамины, гормоны и источник углеводов, она начинает делиться и образует культуру каллуса. В дальнейшем каллусы можно размножить и получить неограниченное количество биомассы. Основная трудность, с которой сразу же приходится сталкиваться исследователю - это то, что клетки в искусственных условиях начинают бурно делиться и расти, но при этом часто не в состоянии продуцировать вторичные метаболиты, т.е. биологически активные вещества растений.

Клонирование растений чаще применяется в комплексе с другими биотехнологическими методами, такими как слияние (гибридизация) клеток и трансгенез (межвидовой перенос генов). Целые растения из реконструированных клеток получают затем методом клонирования. Слияние клеток осуществляется несколькими способами с использованием так называемых фузогенных (т.е. сливающих) агентов различного происхождения: физического (переменное электрическое или магнитное поле), химического (катионы, полиэтиленгликоль и др.), биологического (вирусы). Растительные клетки перед слиянием превращают в протопласты (т.е. клетки, лишенные внешней жесткой клеточной стенки). Последующий отбор (скрининг) полученных гибридных клеток позволяет отобрать те из них, которые объединили геномы или фрагменты ДНК родительских клеток. Клеточная инженерия позволяет получать гибридные штаммы, клетки или даже целые растения (растения-регенераты), скрещивая между собой филогенетически (т.е. эволюционно) отдаленные организмы. В случае неполного слияния клеток (т.е. клетка-реципиент получает отдельные участки ядерного генетического материала или части клетки- донора (органеллы)) получаются асимметричные гибриды. Это расширяет возможности получения новых сортов сельскохозяйственных растений, для создания которых ранее использовались методы классической селекции.

Биологические и этические проблемы клонирования. За последнее время созданы ряд межвидовых и межродовых гибридов табака, картофеля, томата, капусты, турнепса, сои и др. Использование достижений клеточной инженерии, например, позволило разработать технологии получения безвирусных растений (например, картофеля) путем регенерации целого растения из одной соматической клетки.

Ученые работают над изменением генотипов злаков. Они вводят в их генотипы специальный ген бактерий, который будет способствовать усвоению азота из атмосферного воздуха. Решение этой проблемы позволило бы сократить затраты средств на производство азотных удобрений.

Перенос генов используется и при выведении новых сортов декоративных растений. Так, в генотип петунии был перенесен ген, нарушающий образование пигмента в лепестках. Таким путем была создана петуния с белыми цветками. Благодаря методам клеточной инженерии сроки, необходимые для выведения новых сортов растении, сокращаются с 10-12 лет при использовании обычных методов селекции до 3-4 лет.

Трансгенные растения постепенно завоевывают мир. Особенно интенсивно процесс идет в США, Западной Европе, Японии, Китае. Только в Китае по некоторым данным зарегистрировано около 120 генетически модифицированных сортов сельскохозяйственных культур. В США генетически модифицированная соя вытеснила традиционную. Благодаря достижениям в области трансгенеза и клонирования мы сможем уже в ближайшее десятилетие в полной мере воспользоваться растением как наиболее дешевой и экологически безопасной фабрикой для производства большинства необходимых человеку материалов, пищи, лекарственных препаратов, химических соединений, сырья и т. д.

Если говорить о перспективах медицинского применения генетически модифицированных растений, то наиболее популярен сейчас вопрос о синтезе витамина А в «Золотом рисе» — продукте совместных научных разработок групп Инго Потрикуса из Федерального технологического института (Швейцария) и Питера Бейера из Университета Фрайбурга (Германия). Получены результаты по экспрессии человеческого соматотропина (гормона роста) в хлоропластах табака. Это исследование заложило новую тенденцию в биотехнологии растений, а именно: синтез фармацевтических и диагностических препаратов и оральных вакцин растениями. Экспрессия соматотропина табаком — это работа Джеффри Стауба и его коллег в Monsanto Co., результаты которой опубликованы в журнале Nature Biotechnology (т. 18, с. 333, 2000). Синтез растениями антител и оральных вакцин уже был описан ранее. Недостатком предыдущих работ был относительно низкий уровень экспрессии искомых продуктов. И вот впервые важный с фармацевтической точки зрения белок в значительных количествах синтезирован путем использования новой системы экспрессии в хлоропластах.

Биотехнология растений играет важную роль и в решении продовольственной проблемы. Она дает новый мощный инструмент, дополняющий уже существующие способы повышения производительности сельского хозяйства и, как следствие, стимулирования экономического роста в бедных странах. Однако, в то время как медицинская продукция уже получила всеобщее признание, внедрение генетически модифицированных продуктов питания в некоторых развитых странах встретило сильнейшую оппозицию, связанную, главным образом, с недостатком генетических знаний и, как следствие, необоснованными страхами. Тем не менее, определенные опасения в отношении трансгенных растений имеют под собой почву.

По мнению специалистов, трансгенные организмы, преимущественно устойчивые к вредителям (в основном за счет токсинов, происходящих из Bacillus thuringiensis) способны вызвать изменения в популяции насекомых, однако куда большее влияние оказывает применение инсектицидов. Устойчивость к солям, воде, засухе и другие характеристики будут оказывать влияние, предсказать которое трудно, поэтому приступать к этим разработкам следует с особой осторожностью. Кроме того, следует гарантировать, что будут предприняты все необходимые меры предосторожности во всех случаях, когда продовольственные или кормовые культуры модифицируются с целью получения фармакологически активных соединений, которые могут быть перенесены к другим растениям, или проникать в почву и затем в воду. В целом продукты селекции растений значительно менее агрессивны, чем исходные или дикие растения. Это объясняется тем, что в них человек стремится закрепить выгодные для себя качества, а это зачастую серьезно ограничивает их способность выживать за пределами фермерского поля, где культивирование и контроль за сорняками значительно облегчает им жизнь.

Так, например, многие зерновые культуры отбирались по тому признаку, что их колосья не рассыпаются в процессе созревания. Это существенно облегчает уборку урожая, и в то же время препятствует естественному распространению семян. Вероятно, это окажется справедливым и в отношении генетически модифицированных растений, так как по своей основе они также представляют собой культивируемые растения. Недавние эксперименты в Великобритании показали, что сельскохозяйственные генетически модифицированные растения, тестированные на выживание в природных условиях, не имеют никаких преимуществ перед их дикими сородичами.

И все же существуют некоторые опасения, что чужеродные гены из ГМ- растений могут передаваться другим диким растениям, в результате чего возникнут сорняки, которые будет более сложно удержать под контролем. Эта опасность должна быть осознана. Считается недальновидным вводить ген толерантности к гербицидам в рис там, где красный рис произрастает как сорняк, и в сорго там, где сорняком является гумай (алепское сорго). Скрещивание с этими видами сильных сорняков может сделать неэффективным использование гербицидов для борьбы с ними. Пока что в результате применения трансгенных растений неблагоприятные эффекты не обнаружены.

Другое применение технологии клонирования - культивирование растение на питательных средах. Таким путем из небольшой части (клетки) растения можно получить до 1 млн. растений в год. Этот метод используют для быстрого размножения редких или вновь созданных ценных сортов сельскохозяйственных растений.

При культивировании клеток растений на питательных средах из одной многократно делящейся клетки можно получить клоны, в клетках которых накапливается в несколько раз больше ценных веществ, чем в выращиваемом обычным способом целом растении. Так получают, например, биомассу женьшеня для нужд парфюмерной и медицинской промышленности. В 1992-93 гг. в Биолого-почвенном институте ДВО РАН была получена трансгенная культура жень-шеня со встроенным геном ризогенных бактерий (rolC). Трансгенные корни имеют очень интересные свойства. В отдельных пробах содержание гинзенозидов в них составило до 6%, что существенно превышает содержание этих веществ в природных корнях женьшеня. Трансгенная культура кирказона маньчжурского (Aristolochia manshuriensis Кот.) является источником ценного препарата кардиотропного действия, предупреждающего развитие инфаркта миокарда и эффективного при постинфарктной реабилитации.

Одним из новых направлений является разработка способов микроклонального размножения редких и исчезающих растений. Получены микрорастения в культуре in vitro женьшеня, кирказона, незабудочника, метаплексиса, гиностеммы, василистника, родиолы, кодонопсиса и других редких растений флоры. Создание такого своеобразного «банка» растений поможет сохранить исчезающие в природе виды. По мере разработки методов восстановления природных экосистем эти банки будут использованы для реинтродукции типичных растений в природные местообитания.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 981; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.