КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Глобальная интерполяция
В случае глобальной интерполяции отыскивается единый полином на всем интервале [ a, b ], т.е. строится полином, который используется для интерполяции функции f(x) на всем интервале изменения аргумента x. Будем искать интерполирующую функцию в виде полинома (многочлена) m –ой степени Pm (x) =a 0 +a 1 x+a 2 x 2 +a 3 x 3 +…+am xm. Какова должна быть степень многочлена, чтобы удовлетворить всем условиям интерполяции? Допустим, что заданы две точки: (x 0, f 0) и (x 1, f 1), т.е. N=1. Через эти точки можно провести единственную прямую, т.е. интерполирующей функцией будет полином первой степени P 1(x) =a 0 +a 1 x. Через три точки (N=2) можно провести параболу P 2(x) =a 0 +a 1 x+a 2 x 2 и т.д. Рассуждая таким способом, можно предположить, что искомый полином должен иметь степень N. Для того, чтобы доказать это, выпишем систему уравнений на коэффициенты. Уравнения системы представляют собой условия интерполяции в при каждом x=xi:
Данная система является линейной относительно искомых коэффициентов a 0, a 1, a 2, …, aN. Известно, что СЛАУ имеет решение, если ее определитель отличен от нуля. Определитель данной системы
носит имя определителя Вандермонда. Из курса математического анализа известно, что он отличен от нуля, если xk ≠ xm (т.е. все узлы интерполяции различные). Таким образом, доказано, что система имеет решение. Мы показали, что для нахождения коэффициентов
Дата добавления: 2014-12-16; Просмотров: 616; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |