КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методы решения обыкновенных дифференциальных уравнений
В классическом анализе разработано немало приемов нахождения решений дифференциальных уравнений через элементарные функции. Между тем при решении практических задач эти методы оказываются, как правило, либо совсем бесполезными, либо их решение связано с недопустимыми затратами усилий и времени. Для решения прикладных задач созданы методы приближенного решения дифференциальных уравнений, которые условно можно подразделить на три основные группы. 1. Аналитические методы, применение которых даст решение дифференциальных уравнений в виде аналитической функции (метод Пикара, [17]). 2. Графические методы, дающие приближенное решение в виде графика (метод Эйлера). 3. Численные методы, когда искомая функция получается в виде таблицы (метод Рунге-Кутта). Ниже рассматриваются относящиеся к указанным группам некоторые избранные методы решения обыкновенных дифференциальных уравнений первого порядка вида (1). Что же касается дифференциальных уравнений n-го порядка: y (n) = f (x,y,y ¢,..., y (n -1)), (4) для которых задача Коши состоит в нахождении решения y=y(x), удовлетворяющего начальным условиям , , (5) где – заданные числа, то их можно свести к системе дифференциальных уравнений первого порядка. Так, например, уравнение второго порядка , (6) можно записать в виде системы двух уравнений первого порядка при помощи стандартной замены: . (7) Методы решения систем обыкновенных дифференциальных уравнений основываются на соответствующих методах решения одного уравнения (см. [17]). Очевидно, что ставить вопрос об отыскании приближенных значений интеграла или решения y(x) уравнения (1) можно в том и только в том случае, если решение y(x), удовлетворяющее условию (3), существует и единственно. Как известно из общей теории дифференциальных уравнений, для этого достаточно, чтобы фигурирующая в правой части уравнения (1) функция f(x,y) была непрерывна в рассматриваемой области по обоим аргументам и имела ограниченную частную производную.
Дата добавления: 2014-12-16; Просмотров: 968; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |