Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Закон сохранения полной механической энергии системы




Теорема об изменении кинетической энергии системы.

Запишем основной закон динамики для каждой точки: , k = 1, 2, 3,…, n. Умножим скалярно это уравнение на (учтено ):

, .

Здесь – элементарная работа внешних сил по перемещению k -ой материальной точки, – элементарная работа внутренних сил по перемещению k -ой материальной точки.

Проинтегрируем записанное уравнение по времени: .

Просуммируем полученные уравнения:

Здесь – кинетическая энергия системы материальных точек:

– теорема об изменении кинетической энергии системы материальных точек: изменение кинетической энергии системы материальных точек равно сумме работ всех внешних и внутренних сил, действующих на элементы системы.

Эта теорема справедлива для материального тела и для системы материальных тел.

Под кинетической энергией материального тела понимаем: .

Под кинетической энергией системы материальных тел понимаем: . В случае, когда все внутренние силы системы являются консервативными: . Тогда: . Если также и внешние силы консервативны: , то:

Величина – полная механическая энергия системы.

– закон сохранения полной механической энергии системы: если все внутренние и внешние силы, действующие на элементы системы консервативны, то ее полная механическая энергия сохраняется.

Если только часть сил, действующих на элементы системы консервативны, то полная механическая энергия не сохраняется. Она может убывать или возрастать.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 457; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.