Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Угол между векторами




Скалярное произведение векторов, заданных координатами

Так как единичные векторы (орты) осей Ox, Oy, Oz прямоугольной системы координат взаимноперпендикулярны, то по формуле (1.6.1) получим:

, , (1.6.2.1)

Далее, используя свойство скалярного произведения имеем:

(1.6.2.2)

Пусть, , . Найдем произведение этих векторов (с учетом формул 1.6.2.1 и 1.6.2.2):

(1.6.2.3)

Таким образом, скалярное произведение двух векторов равно сумме произведений одноименных координат этих векторов.

Из равенства (1.6.2.3) и равенства векторов получим:

(1.6.2.4)

,

т.е. квадрат длины вектора равен сумме его координат.

Из равенства (1.6.2.4) найдем длину вектора :

(1.6.2.5)

Длина вектора равна квадратному корню из суммы квадратов его координат.

Из определения скалярного произведения двух векторов следует, что

(1.6.3.1)

Если векторы и заданы координатами и , то формула (1.6.3.1) запишется в виде:

(1.6.3.2)




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 353; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.