КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнение Максвелла в дифференциальной форме
Уравнение Максвелла в интегральной форме. С введением тока смещения макроскопическая теория электромагнитного поля была завершена. Открытие тока смещения позволило Максвеллу создать единую теорию электрических и магнитных явлений. Теория Максвелла не только объясняла все разрозненные явления электричества и магнетизма (причём с единой точки зрения), но и предсказала ряд новых явлений, существование которых подтвердилось в последствии. Основу теории Максвелла составляют уравнения, названные уравнениям Максвелла. Эти уравнения играют такую же роль, как законы Ньютона в механике. Они в сжатой форме выражают всю совокупность наших сведений об электромагнитном поле. Эти уравнения являются постулатами электродинамики, полученные путём обобщения опытных фактов.
(3)
, (4) где ρ – объёмная плотность заряда; dV – элемент объёма внутри поверхности.
(5) Магнитный поток (поток вектора) через произвольную замкнутую поверхность всегда тождественен нулю – это означает, что поле является вихревым (силовые линии замкнуты), или, что не существует “магнитных зарядов”. (6) Из уравнений Максвелла следует, что электрические и магнитные поля нельзя рассматривать как независимые: изменение во времени одного из этих полей приводит к появлению второго. Если же поля стационарные (Е = const и И = const), то уравнения Максвелла становятся независимыми и имеют вид:
В этом случае поля (электрические и магнитные) независимы друг от друга, что и позволяет изучить сначала постоянное электрическое поле, а затем независимо от него и постоянное магнитное поле. Уравнения (3-6) записаны в интегральной форме. Гораздо чаще используется дифференциальная форма записи этих уравнений, которая позволяет описать электромагнитное поле в любой точке (точнее в любом элементарном объёме) пространства. Уравнения Максвелла в дифференциальной форме легко получаются из уравнений (3-6) путём применения известных из векторного анализа теорем Остроградского-Гаусса и Стокса, устанавливающих связь между линейными, поверхностными и объёмными интегралами:
где – скалярная функция – дивергенция (расхождение):
где – векторная функция – ротор (вихрь):
С учётом вышеизложенного уравнения (3-6) принимают вид:
Т.к. объёмы и поверхности, по которым происходит интегрирование произвольны, то можно приравнять подынтегральные функции и получить уравнения Максвелла в дифференциальной форме:
Дата добавления: 2014-12-16; Просмотров: 620; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |