КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Планирование траекторий манипулятора
Лекция 14 Планирование траекторий движения манипулятора – это задача выбора закона управления, обеспечивающего движение манипулятора вдоль некоторой заданной траектории. Перед началом движения манипулятора важно знать: 1. существуют ли на его пути какие-либо препятствия; 2. накладываются ли какие-либо ограничения на траекторию схвата. В зависимости от ответов на эти вопросы выбирается один из четырех типов управления манипулятором (табл. 14.1).
Таблица 14.1. Типы управления манипулятором
Рассмотрим планирование траектории манипулятора при отсутствии препятствий (II и IV тип). Задача состоит в разработке математического аппарата для выбора и описания желаемого движения манипулятора между начальной и конечной точками траектории. При планировании траекторий обычно применяется один из двух подходов: 1. Задается точный набор ограничений (например, непрерывность и гладкость) на положение, скорость и ускорение обобщенных координат манипулятора в некоторых (называемых узловыми) точках траектории. Планировщик траекторий после этого выбирает из некоторого класса функций (как правило, среди многочленов, степень которых не превышает некоторое заданное n) функцию, проходящую через узловые точки и удовлетворяющую в них заданным ограничениям. Определение ограничений и планирование траектории производится в присоединенных координатах. 2. Задается желаемая траектория манипулятора в виде некоторой аналитически описываемой функции, как, например, прямолинейную траекторию в декартовых координатах. Планировщик производит аппроксимацию заданной траектории в присоединенных или декартовых координатах. Планирование в присоединенных переменных обладает тремя преимуществами: 1) задается поведение переменных, непосредственно управляемых в процессе движения манипулятора; 2) планирование траектории может осуществляться в реальном времени; 3) траектории в присоединенных переменных легче планировать. 4) Должны быть сведены к минимуму бесполезные движения типа «блуждания».
Рисунок 14.1. Блок-схема планировщика траекторий Недостаток – сложность определения положения звеньев и схвата в процессе движения. Это необходимо для предотвращения столкновения с препятствием. В общем случае основной алгоритм формирования узловых точек траектории в пространстве присоединенных переменных весьма прост: ; цикл: ждать следующего момента коррекции; ; =заданное положение манипулятора в пространстве присоединенных переменных в момент времени ; Если , выйти из процедуры; Выполнить цикл. Здесь – интервал времени между двумя последовательными моментами коррекции параметров движения манипулятора. Из алгоритма видно, что все вычисления производятся для определения траекторной функции , которая должна обновляться в каждой точке коррекции параметров движения манипулятора. На планируемую траекторию накладывается четыре ограничения: 1) Узловые точки должны легко вычисляться нерекуррентным способом. 2) Промежуточные положения должны определяться однозначно. 3) Должна быть обеспечена непрерывность присоединенных координат и их двух первых производных, чтобы планируемая траектория в пространстве присоединенных переменных была гладкой. 4)
Перечисленным ограничениям удовлетворяют траектории, описываемые последовательностями полиномов. В общем случае планирование траекторий в декартовых координатах состоит из двух последовательных шагов: 1) формирование последовательности узловых точек в декартовом пространстве, расположенных вдоль планируемой траектории схвата; 2) выбор некоторого класса функций, аппроксимирующих участки траектории между узловыми точками в соответствии с некоторым критерием (например, прямые, дуги круга, параболы и т.п.). Первый подход позволяет обеспечить высокую точность движения вдоль заданной траектории. Однако, при отсутствии датчиков положения схвата в декартовых координатах, для перевода декартовых координат в присоединенные требуется большое количество вычислений, что замедляет время движения манипулятора. Поэтому используется второй подход – декартовы координаты узловых точек преобразуются в соответствующие присоединенные координаты с последующим проведением интерполяции в пространстве присоединенных переменных полиномами низкой степени. Это сокращает вычисления и позволяет учесть ограничения динамики манипулятора. Но точность движения снижается.
Дата добавления: 2014-12-17; Просмотров: 1630; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |