КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Задачи динамики для свободной и несвободной материальной точки
Для свободной материальной точки задачами динамики являются следующие: 1) зная закон движения точки, определить действующую на нее силу (первая задача динамики); 2) зная действующие на точку силы, определить закон движения точки (вторая или основная задача динамики). Решаются обе эти задачи с помощью уравнений, выражающих основной закон динамики, так как эти уравнения связывают ускорение а т. е. величину, характеризующую движение точки, и действующие на нее силы. В технике часто приходится сталкиваться с изучением несвободного движения точки, т. е. со случаями, когда точка, благодаря наложенным на нее связям, вынуждена двигаться по заданной неподвижной поверхности или кривой. В этих случаях, как и в статике, будем при решении задач исходить из аксиомы связей, согласно которой всякую несвободную материальную точку можно рассматривать как свободную, отбросив связь и заменив ее действие реакцией этой связи N. Тогда основной закон динамики для несвободного движения точки примет вид: ma = ΣFka+N, где FKa -действующие на точку активные силы. Первая задача динамики для несвободного движения будет обычно сводиться к тому, чтобы, зная движение точки и действующие на нее активные силы, определить реакцию связи. Пример решения первой задачи динамики: Лифт весом Р (рис. 1) начинает подниматься с ускорением а. Определить натяжение троса. Рисунок 1 Рассматривая лифт как свободный, заменяем действие связи (троса) реакцией Т и, составляя уравнение ma = ΣFka + N в проекции на вертикаль, получаем: . Отсюда находим: .
Если лифт начнёт опускаться с таким же ускорением, то натяжение троса будет равно: .
Дата добавления: 2014-12-17; Просмотров: 1415; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |