КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методические указания для выполнения практических заданий
Multicomponent Natural Gas Systems Pressure–Temperature Diagrams for In Figure 4.2c for natural gases without a liquid hydrocarbon (or when liquid hydrocarbons exist below 273 K), the lower portion of the pressure–temperature phase diagram is very similar to that shown in Figure 4.2a. Two changes are (1) the LW–H–V line would be for a fixed composition mixture of hydrocarbons rather than for pure methane (predictions methods for mixtures are given in Section 4.2 and in Chapter 5) and (2) quadruple point Q1 would be at the intersection of the LW–H–V line and 273 K, at a pressure lower than that for methane. The other three-phase lines of Figure 4.2a (for I–LW–H and I–H–V) have almost the same slope at Q1. Otherwise, the same points in Section 4.1.1 apply. However, for the case in which natural gases contain heavier components, the upper portion of the diagram is more like that shown in Figure 4.2b. A straight line labeled LW–H–V represents the hydrate formation region equivalent to the region between quadruple point Q1 (I–LW–H–V) and the upper quadruple point Q2 (LW–H–V–LHC) in Figure 4.2b. One significant change in Figure 4.2c is that quadruple point Q2 becomes a line, as indicated in the next paragraph. When a liquid hydrocarbon mixture is present, the LW–V–LHC line in Figure 4.2b broadens to become an area, such as that labeled CFK in Figure 4.2c. This area is caused by the fact that a single hydrocarbon is no longer present, so a combination of hydrocarbon (and water) vapor pressures creates a broader phase equilibrium envelope. Consequently, the upper quadruple point (Q2 ) evolves into a line (KC) for the multicomponent hydrocarbon system. Line KC may not be straight in the four-phase region but is drawn that way for illustration. The location of the lower point K is determined by the intersection point of the phase envelope ECFKL with the LW–H–V line, determined by the methods of Section 4.2 or Chapter 5. To determine the upper point C, first a vapor–liquid equilibrium calculation is performed, assuming the liquid phase (exiting the envelope at point C) equals the vapor composition at point K. That liquid is used to calculate a vapor composition which is used in a vapor– liquid water–hydrate calculation to determine the upper intersection with the phase envelope ECFKL.Amore thorough treatment of the calculation of multicomponent equilibrium with a condensed hydrocarbon phase is given in Sections 4.3.2. Гидраты смесей углеводородных и неуглеводородных компонентов.
Гидраты природных углеводородных газов.
по дисциплине «Планирование на предприятии (организации)» по теме «Сетевой метод планирования» для студентов экономического факультета очной и заочной форм обучения Краснодар 2013 Рассмотрены и одобрены к изданию на заседании кафедры организации производства и инновационной деятельности 4. 03. 2013 г., протокол № 15 Разработаны проф. Соколовой А.П.
Зав. кафедрой организации производства и инновационной деятельности д-р. техн. наук, канд. экон. наук, профессор Бершицкий Ю. И.
Утверждены методической комиссией экономического факультета Протокол № 7 от 11.03.2013
Председатель методической комиссии д-р. экон. наук, профессор Толмачев А. В.
Рецензент: профессор кафедры экономики и внешнеэкономической деятельности канд. экон. наук, доцент Белова Л. А.
Методические указания для выполнения практических заданий по дисциплине «Планирование на предприятии (организации)» по теме «Сетевой метод планирования» для студентов экономического факультета очной и заочной форм обучения – Краснодар. - КубГАУ, - 2013. – 136 с. Содержание
1 Общие понятия ………………………………………………………………. 5 1.1 Сущность и основные признаки проекта………………………………. 5 1.2 Функциональное понимание проекта………………………………….. 6 1.3 Системное понимание проекта…………………………………………. 7 1.4 Признаки проекта……………………………………………………….. 8 1.5 Отличие управления проектами от других видов управления……… 12 2 Сетевые модели как основа планирования проектов…………………….. 14 2.1 Основные понятия и элементы сетевых моделей………………….… 14 2.2 Правила построения сетевых моделей……………………………….. 28 2.3 Укрупнение работ……………………………………………………… 36 2.4 «Сшивание» сетевых моделей………………………………………… 39 2.5 Аналитические параметры сетевых графиков……………………….. 41 2.6 Определение ранних начал и ранних окончаний работ сетевой модели…………………………………………………………………… 42 2.7 Определение поздних начал и поздних окончаний работ сетевой модели…………………………………………………………………… 45 2.8 Определение работ, составляющих критический путь……………… 48 2.9 Определение резервов времени……………………………………….. 49 2.10 Определение коэффициента напряженности работы ………………. 52 2.11 Табличный метод расчета аналитических параметров сетевой модели……………………………………………………………….… 53 Тесты и задания………………………………………………………….…. 62 3 Дополнительные методы расчета сетевых моделей………………….…… 79 3.1 Подкритические работы …………………………………………….… 79 3.2 Расчет многоцелевых сетевых моделей ………………………….…... 80 3.3 Сетевые модели с вероятностной оценкой продолжительности работ ………………………………………………………………….… 82 3.4 Проблемы использования сетевых моделей с вероятностной продолжительностью работ ……………………………………….….. 90 3.5 Привязка сетевого графика к календарю и построение масштабных сетевых графиков ……………………………………………………… 92 Тесты и задания …………………………………………………….……… 96 4. Оптимизация сетевых моделей …………..……………………………… 101 4.1 Оптимизация сетевых моделей по времени ………………………… 101 4.2 Оптимизация сетевых моделей по ресурсам ……………………….. 105 4.3 Оптимизация сетевых моделей по времени и стоимости ……..…… 111 Тесты и задания ………………………………………………………….. 113 5 Сетевые матрицы …………………………………………………………. 116 5.1 Коридорные сетевые графики ……………………………………….. 116 5.2 Понятие сетевой матрицы ………………………………..………….. 118 5.3 Построение сетевых матриц …………………………………………. 120 Тесты и задания ………………...………………………………………… 131 Список использованных источников ……………………………………… 134 Интернет-ссылки……………………………………………………………. 136
Дата добавления: 2014-12-17; Просмотров: 364; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |