Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Матрица перехода от базиса к базису




Опр. 6.4. Пусть (1) и , ,…, (4) - базисы пространства V. Матрица системы векторов (4) в базисе (1) называется матрицей перехода к новому базису. (Матрицей перехода ли от (1) к (4), матрицей преобразования ли координат.)

Теорема 6.5. Матрица перехода от базиса к базису - невырожденная. Доказательство. (1) - базис, значит "k і А =() - матрица (4) в (1). Поскольку (4) – базис "j= . Когда В =(), тогда . Получили но (1) - базис, значит, когда i = j, тогда , а когда ij, j, тогда . Со второй стороны, , значит, , A×B = Еn. (5) – единичная матрица. Следует, что А и В - невырожденные и взаимно-обратные.

Вывод. 6.6. Матрицы перехода от (1) к (4) и от (4) к (1) - взаимно обратные. Доказательство. Сохраним обозначения док-ва 6.5. А – матрица перехода от (1) к (4), В – матрица перехода от (4) к (1). Из того, что A×B = Еn (5) – единичная матрица, значит, что В=А–1, А=В–1.

Теорема 6.7. Когда А - матрица перехода от (1) к (4), и имеет в базисе (1) столбец координат , а в базисе (2) , тогда C = A×Y. Доказательство. Сохраним обозначения теоремы 6.5. Пусть и эти векторы имеют столбцы координат C, Y. Тогда , значит, , и C = A×Y.

Следствие 6.8. (1) и (4) – базис. А – матрица перехода от (1) к (4), Х,Y – координаты векторов в базисах (1) и (4) соответственно, тогда Y=A–1X. Доказательство. В 6.7. доказано, что C = A×Y. Умножим слева на A–1.

Пример 6.9: Старый базис: , . Новый базис: = +2 , =3 +4 . в , .

в , где Т – матрица перехода от старого к новому базису. .

система векторов линейно зависима.■
Теорема 6.10. Пусть (1) – базис пространства V, (4) – сістема векторов пространства V, которое в базисе (1) имеет матрицу А. Тогда система векторов (4) является базисом пространства V, значит, когда матрица А невырожденная, (4) – базис, то .

Доказательство. Если (4) – базис, то доказано в 6.5. Пусть . В (4) столько векторов, какова размерность пространства. Если докажем, что (4) – лин. независ., то по 5.9. докажем, что (4)-базис. . По определению матрицы системы векторов .

 

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 898; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.