КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Напряжения в наклонных сечениях растянутых стержней
Условием прочности при растяжении (сжатии) будет выражение σ = N/ A ≤ σadm. (5.15) С его помощью можно решить следующие задачи: – Проверить прочность нагруженного стержня, т.е. по заданной нагрузке и размерам поперечного сечения определить действительные напряжения и сравнить их с допускаемыми (5.15). – Определить размеры поперечного сечения стержня по известной нагрузке и допускаемому напряжению материала A ≥ N/ σadm. (5.16) – Определить допускаемую продольную силу по заданным размерам А поперечного сечения стержня и допускаемому напряжению материала стержня N ≤ A·σadm. (5.17) Далее, зная связь между продольной силой N и внешними силами F, можно найти предельную внешнюю нагрузку Fu. – Выбрать материал нагруженного стержня по заданным размерам А поперечного сечения стержня и нагрузке, приняв или рассчитав величину коэффициента запаса прочности n: σ0,2 = n· σadm ≥ (n N)/ A. (5.18) Стержни, испытывающие деформацию сжатия, кроме расчета на прочность необходимо рассчитывать и на устойчивость (продольный изгиб), чтобы не произошло выпучивания и потери устойчивости сжатого стержня. Отметим, что при действии на стержень системы внешних сил продольная сила N в поперечном сечении равна алгебраической сумме внешних продольных сил, действующих по одну сторону от сечения.
Для оценки прочности деталей рассмотрим напряжения, действующие по любому сечению растянутого (сжатого) стержня. Нормальные напряжения σ в поперечном сечении считаем известными (5.3). Возьмем сечение, наклоненное под углом α к поперечному сечению (рис. 5.11, а). Площадь наклонного сечения равна Aα = A/ cos α. (5.19) За положительное направление отсчетов угла α примем направление, обратное движению часовой стрелки. Принятое в механике за положительное направление вращения и поворотов против часовой стрелки связано, очевидно, с наблюдаемым в северном полушарии направлением вращения земного шара.
Рис. 5.11 Используя метод сечений, определим полное напряжение pα по наклонной площадке (рис. 5.11, б): pα = N/ Aα = N cos α/ A = σ cos α. (5.20) Разложим полное напряжение pα на нормальную и касательную составляющие (рис. 5.11, в) σα = pα cos α = σ cos2 α; (5.21) τα = pα sin α = (σ/2) sin 2α = 0,5 σ sin 2α. (5.22) Исследуем выражения (5.21) и (5.22) по определению нормальных и касательных напряжений в зависимости от угла наклона площадки. При α = 0, т.е. в поперечных сечениях нормальные напряжения максимальны, касательные равны нулю. При α = 90°, т.е. в продольных сечениях, нет ни нормальных, ни касательных напряжений. Это значит, что продольные слои растянутого стержня не имеют друг с другом силового взаимодействия по боковым поверхностям и растяжение стержня можно представить как растяжение пучка не связанных друг с другом параллельных нитей. Максимальное касательное напряжение будет в сечении, расположенном под углом 45° к поперечному и равно оно половине напряжения в поперечном сечении: τmax = τα=45° = 0,5 σ. (5.23) Оценивая напряжения в различных сечениях стержня при растяжении или сжатии, видим, что стержень может разрушиться или по поперечному сечению в результате действия максимальных нормальных напряжений, или от действия максимальных касательных напряжений по сечению, наклоненному к поперечному под углом 45°.
Дата добавления: 2014-11-29; Просмотров: 1427; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |