Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Обратный цикл Карно




Протекаетв обратном направленииследующим образом (рис. 1.10). Рабочее тело с начальными параметрами точки «а» расширяется адиабатно по «ab», совершая работу за счет внутренней энергии и охлаждается от температуры до в точках. Затем расширение идет по изотерме (bc) и рабочее тело отбирает от холодного источника при температуре теплоту .

Далее рабочее тело сжимается по адиабате «cd» и его температура повышается от до , а затем сжимается по изотерме «da» ( - const). При этом рабочее тело отдает горячему источнику с температурой количество теплоты . В результате получается, что работа сжатия будет больше работы расширения на величину площади «abcd», ограниченной контуром цикла. Эта работа превращается в теплоту и вместе с передается горячему источнику. При этом холодный источник отдает теплоту , а горячий получит

Рис. 1.10

Обратный цикл Карно называется идеальным циклом холодильных установок и так называемых тепловых насосов. При этом рабочим телом являются пары легкокипящих жидкостей – фенол, аммиак и т.п. Процесс перекачки теплоты от тел, помещенных в холодильную камеру, в окружающую среду происходит за счет затрат электроэнергии. Эффективность холодильной установки оценивается холодильным коэффициентом

, (1.79)

 

где q2 - отведенная от охлаждаемого объекта теплота;

lц - работа, затраченная на это.

Используя Ts -диаграмму для описания этого процесса, последней формуле можно придать следующий вид

 

 

, (1.80)

 

где Т1 – температура окружающей среды; Т2 - температура охлаждаемого тела.

 

При этом чем меньше разность температур между холодильной камерой и окружающей средой, тем меньше нужно затратить энергии для передачи теплоты от холодного тела к горячему и тем выше холодильный коэффициент εхол.

Анализ обратного цикла Карно показывает, что передача теплоты от тела менее нагретого телу более нагретому возможна, но этот процесс требует соответствующей энергетической компенсации в системе, в виде затраченной работы или теплоты более высокого потенциала, способного совершить работу при переходе на более низкий потенциал.

В основе действия теплового насоса также лежит обратный цикл Карно. В отличие от холодильной машины, тепловой насос должен отдавать как можно больше теплоты горячему телу (например, системе отопления).

Эффективность теплового насоса оценивается так называемым отопительным коэффициентом

 

, (1.81)

 

где q1 - теплота, переданная нагреваемому телу;

lц - величина работы, подведенной в данном цикле.

Аналогично выводу формулы (1.80) для eотоп можно получить следующую формулу:

 

, (1.82)

 

где Т1 - температура нагреваемого тела;

Т2 - температура окружающей среды.

 

1.3.4. Второй закон термодинамики

 

При анализе термодинамических циклов тепловых двигателей следует обратить внимание на то, что эталонным является цикл Карно, построенный в том же интервале температур , в котором работает рассматриваемый цикл. Например, если известно, что термический КПД некоторого прямого цикла равен 0,1, то само по себе это значение еще ни о чем не говорит. Оно должно быть сопоставлено со значением термического КПД соответствующего цикла Карно, т.е. должен быть дополнительно задан интервал температур . Скажем, для диапазона температур 300...2000 К термический КПД цикла Карно = 0,85 и степень совершенства цикла с термическим КПД - 0,1 мала, а для диапазона 300...335 K = 0,104 - достаточно велика. Таким образом, для увеличения термического КПД прямого цикла необходимо стремиться к тому, чтобы средние интегральные температуры подвода и отвода теплоты в цикле были как можно ближе к своим аналогам для соответствующего цикла Карно. Никакими новыми конструкциями тепловых двигателей или применением новых рабочих тел нельзя добиться того, чтобы термический КПД цикла , стал больше . Аналогичные соображения справедливы и для циклов холодильных машин и соответственно обратного цикла Карно.

Существует несколько формулировок второго закона термодинамики. Наиболее известна формулировка, предложенная Клаузиусом в виде принципа, согласно которому теплота не может сама собой переходить от более холодного тела к более нагретому. Этот принцип или какой-то другой, ему адекватный, может быть использован при рассмотрении ряда теоретических вопросов термодинамики (например, теоремы Карно). При этом необходимо иметь в виду, что второй закон термодинамики содержит два независимых друг от друга положения. Первое из них связано с вопросом существования энтропии, т.е. с утверждением, что в равновесных процессах элементарное количество теплоты может быть рассчитано по формуле , где s - некоторая функция состояния, называемая энтропией. Второе положение формулируется обычно как принцип возрастания энтропии в необратимых процессах (т.е. для них ).

В основе II закона лежит гипотеза С. Карно о том, что необходимым условием получения работы с помощью тепловых двигателей является наличие горячего и холодного источников теплоты.

Таким образом, устанавливается, что теплота, полученная рабочим телом от горячего источника, не может быть полностью превращена в механическую работу, часть ее должна быть отдана холодному источнику теплоты.

В тепловых двигателях горячим источником служат химические реакции сжигания топлива (или ядерные реакции), а холодным источником является окружающая среда (т.е. атмосфера).

Таким образом, II закон термодинамики можно сформулировать следующими словами: «двигатель, полностью превращающий в работу всю полученную от горячего источника теплоту, невозможен».

В аналитической форме второй закон термодинамики может быть представлен в виде соотношения

 

,

 

где знак “=” относится к обратимым процессам, а знак “>” - к необратимым.

Первый закон термодинамики представляет собой всеобщий закон природы. В отличие от него второй закон нельзя считать универсальным. Экстраполяция закономерностей, установленных в определенных условиях существования материи, на все области Вселенной не является правомерной, так как в некоторых из них эти условия могут быть совершенно иными, чем на Земле. Кроме того, необходимо дополнительно учитывать некоторые существенные физические факторы и прежде всего гравитацию. С учетом сил тяготения однородное изотермическое распределение не является наиболее вероятным состоянием Вселенной. В условиях нестатичной, расширяющейся Вселенной может происходить распад однородного вещества на отдельные объекты (например, галактики).




Поделиться с друзьями:


Дата добавления: 2014-12-07; Просмотров: 1092; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.