КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Параболоиды
Гиперболоиды.
Определение 10.3. Гиперболоидами называются поверхности, которые в некоторой системе прямоугольных декартовых координат определяются каноническими уравнениями , (10.3) . (10.4)
Гиперболоид, определяемый уравнением (10.3), называется однополостным; гиперболоид, определяемый уравнением (10.4), называется двуполостным. Для обоих видов гиперболоидов сечения, параллельные оси Oz - гиперболы (для однополостного гиперболоида в сечении может быть пара пересекающихся прямых); сечения, параллельные плоскости xOy - эллипсы. Величины a, b, с называются полуосями гиперболоида.
Замечание. При a=b гиперболоиды являются поверхностями вращения. Определение 10.4. Параболоидами называются поверхности, которые в некоторой системе прямоугольных декартовых координат определяются каноническими уравнениями , (10.5) , (10.6) где p и q - положительные числа, называемые параметрами параболоида. Параболоид, определяемый уравнением (10.5), называется эллиптическим. Сечения эллиптического параболоида, параллельные оси Oz - параболы; сечения, параллельные плоскости xOy - эллипсы. Параболоид, определяемый уравнением (10.6), называется гиперболическим. Сечения гиперболического параболоида, параллельные плоскостям yOz и xOz - параболы; сечения, параллельные плоскости xOy - гиперболы.
Замечание. В случае, когда p = q, эллиптический параболоид (10.5) является поверхностью вращения (вокруг оси Oz).
Пример. Определить вид поверхности , используя метод сечения плоскостями.
Решение. Уравнение поверхности не содержит членов с произведением координат, следовательно плоскости симметрий параллельны координатным плоскостям.
Пересекая поверхность плоскостями параллельными плоскости xOy, получим: . Так как для любого с, полученная кривая является гиперболой с действительной осью, параллельной оси Ox.
Пересекая поверхность плоскостями аналогично получаем уравнение гиперболы с действительной осью, параллельной оси Ox.
При пересечении данной поверхности плоскостями , параллельными координатной плоскости yOz, получаем: .
Последнее уравнение при ,т.е. при и , есть уравнение эллипса.
Таким образом сечениями поверхности плоскостями являются эллипсы и гиперболы, действительные оси которых параллельны. Следовательно, исследуемая поверхность - двуполостный гиперболоид. Его уравнение можно преобразовать к каноническому виду: .
Дата добавления: 2014-12-07; Просмотров: 397; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |