КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Каждая новая плоскость должна быть перпендикулярна плоскости которую не заменяют , т.е. система должна оставаться двух взаимно перпендикулярных плоскостей
Требования, предъявляемые к новой системе плоскостей проекций. • Новая система плоскостей π1 π4 или π2 π3 должны быть взаимно перпендикулярными между собой. • При замене плоскостей проекций одна из координат точки на той плоскости проекций, которую мы заменяем, остается неизменной. Так, при замене плоскости π1 неизменной остается координата Y, при замене плоскости π2 – координата Z.
Способом замены плоскостей можно решать следующие задачи:
- нахождение расстояния от точки до прямой общего положения; - нахождение расстояния от точки до плоскости общего положения; - нахождение расстояния между параллельными прямыми; - нахождение расстояния между скрещивающимися прямыми; - нахождение величины двугранного угла; - нахождение натуральной величины любой плоской фигуры; - нахождение точки встречи прямой с плоскостью; - преобразование плоскости общего положения в проецирующую или плоскость уровня; - преобразование прямой общего положения в прямую уровня; - преобразование прямой общего положения в проецирующую прямую.
Пример 1. Преобразовать методом замены плоскостей эпюр таким образом, чтобы плоскость общего положения стала проецирующей (частного положения). Пример 2. Определить точку встречи прямой с плоскостью общего положения.
Определить расстояние от точки D до плоскости АВС и натуральную величину треугольника методом замены плоскостей.
Пример: определить натуральную величину треугольника АВС методом замены плоскостей проекции.
Дата добавления: 2014-12-07; Просмотров: 1096; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |